

1

A numerical solver for the advection equation

Jan.Christian.Meyer@ntnu.no

2

Our objective

• Numerically integrating various functions accounts for a lot of
applications in parallel computing

– It easily grows to run for a long time with complicated problems

• In order to look at our various programming models, we need
something to parallelize

– An example problem with a bit of integration fits well

– If we go through how it works now, we can use it without repeating what it’s for
later on

• TDT4200 is not a math class
– We’ll use almost the simplest problem there is

– It’s still necessary to understand how it works, though

3

Advection and diffusion

• Many distributions of things spread out from where we have lots of
it towards where we have less, until it’s in equilibrium

– Heat

– Gases

– Water pollution

– etc.

• Two effects contribute to this:
– Diffusion is the thing’s own tendency to level out

– Advection is how the medium it is in carries it along when moving

• Advection works much faster than diffusion
– Try to heat your apartment with and without a fan next to the heating element if you

don’t believe me

4

Advection terms

• Let’s just think in 1 dimension to start with

• There are three parts to the equation:
– U is the amount of whatever is spreading out

– t is the time axis

– x is the space axis

• If we’re standing in some position along x,
– dU / dt is the difference in how much U remains when time passes

– dU / dx is the difference in how much U there is to our left and right

– v is how quickly the medium is moving, and thus transporting some of
our U in either direction

5

The advection equation

• Here it is:

• Intuitively,
– dU/dx indicates whether we find more or less U in a direction

– v scales how quickly it will move from more to less

– dU/dt is how much the amount of U will have changed in a moment

– This thing is simple enough that we could just integrate it by hand and
obtain a function U(t,x), which would solve the whole problem

– That wouldn’t give us anything to compute, though, so we’ll cut it up in a
way that is usually reserved for more complicated problems

6

Taylor polynomials

• Recall that
• The terms in a Taylor series shrink as the factorial of

the term’s index, so they rapidly become very small
• If we cut it off at the 2nd term, we’ll only be making a

small error, so we can use

and solve it for f’(x):

7

Discretizing dU/dx
(looking ahead)

• If we split our space axis into chunks of Δx, our
expression gives the gradient of a straight line
connecting the U-values in neighboring points:

Δx Δx ΔxU(0) U(1) U(2) U(3)

U(2)-U(1)

 Δx

These are forward differences,
because we find the gradient at
U(1) from U(2) and U(1)

8

Discretizing dU/dx
(looking behind)

• If we split our space axis into chunks of Δx, our
expression gives the gradient of a straight line
connecting the U-values in neighboring points:

Δx Δx ΔxU(0) U(1) U(2) U(3)

U(2)-U(1)

 Δx

These are backward differences,
because we find the gradient at
U(2) from U(2) and U(1)

9

Discretizing dU/dx
(looking in both directions)

• If we average the forward and backward estimates,
we get another estimate of the gradient at U(2):

Δx Δx ΔxU(0) U(1) U(2) U(3)

U(2)-U(1)

 Δx

These are central differences,
because we find the gradient at
U(2) from U(3), U(2), and U(1)

U(3)-U(2)

 Δx+

2

10

Simplifying the expression

• We can clean it up a little:
(for brevity, let Ui be the U-value at the i-th step)

• If we substitute that as our estimate of dU/dx, the overall
equation becomes

11

Discretizing dU/dt
(looking forward)

• If we similarly chop up the time axis in chunks of Δt,
we can do the same thing all over again:

or with Uk as the U-value at the k-th step,

12

All together now

• The whole advection equation has now become

which we can rearrange to obtain

– On the left hand side, we have U for the next moment in time
– On the right hand side, we have only U values for the present moment in

time
– If we start from a distribution of U-s in one moment, we can

• Calculate what it’ll be in the next moment,
• use the answer to calculate what it’ll be in two moments,
• use that answer to calculate… I’m sure you see where this is going

13

There’s one major missing piece

• The right hand side requires U-values from left and right neighbor
points

• What about the very first and the very last U-value?

• We need two extra values that are determined in some other way,
a.k.a. boundary conditions

• Three popular choices:
– Dirichlet (say that the outside points equal some constants)

– Neumann (say that the outside points mirror the inside points)

– Periodic (say that the last outside point equals the first inside and vice versa,
wrapping the domain around itself)

• We’ll do periodic boundaries today

14

There’s one minor missing piece

• Our formula has a stability issue

– We’re making a small rounding error for every time step, so sooner
or later the answer will consist mostly of error

– If we replace the Uk
i term on the r.h.s. with the average of its

neighbors instead, we add some artificial inertia/friction/viscosity

– That way, we get a movement that dies out instead of one that
ultimately goes completely bananas:

(This is called a “Lax-Friedrichs” method, but you don’t have to remember that)

15

Turning it into software

• We’ll certainly need two arrays of U-values, with N
elements each:

• Give them extra boundary elements, and fix the
indexing with a macro, for readability

u[0][0] u[0][N-1]

u[1][0] u[1][N-1]

“now”

“next”

U(-1) U(N)

U_next(-1) U_next(N)

16

The main stages of the program

• Initialize:
– Determine the number of points (N), the size of the x-axis (x_range), velocity (v),

space step (dx), time step (dt), number of time steps to calculate (max_iter), and
allocate the arrays.

– Fill them with some interesting U-values we can move around

• Integrate in a loop
– Copy the first/last values into the last/first boundary elements
– Apply the formula we worked out to all the other elements
– Switch the next-array into the now-array, and recycle the now-array as a place to

write a new step
– Repeat

• Finalize:
– Delete all the allocations and stop

17

Seeing something happen

• If we just quietly worked out all the numbers, there
would be no way to tell what the solution is at the end

• There’s a variable ‘snapshot_freq’ in the code, which
triggers the program to write all the numbers in its U-
buffer into a file

• When we have a bunch of those files, we can plot
their contents in graphs, and get a visual confirmation
of how our function evolved over time
– I like to use ‘gnuplot’ for that kind of thing

18

Seeing something happen

• The hard-coded initial state consists of a large
displacement on the left

• It has a speed towards the right, and dies out over
time

19

This is terrible software design

• I know, right?
– It’s not meant to be maintained

• The variables don’t have descriptive names
– They’re chosen to resemble the terms in our expressions, so that they will be

easy to recognize

• The whole program state is global
– We don’t really need any modularity/encapsulation, the whole thing consists of

fewer than 100 lines that only manipulate 2 arrays

• Everything is one long main()-function
– I wanted it to be readable from top to bottom without having to skip around.

– You can split it into sensibly named sub-functions if you wish

20

There’s also a 2D version

• It’s easy to make
– Just add a y-velocity and a dU/dy term to the equation, discretize it

in exactly the same way as for x, and make the U-arrays two-
dimensional

– Mind the boundary elements in the indexing macros

• It takes substantially longer to run
– 1D is easier to explain, but it doesn’t really give us a lot of work to

parallelize

21

Going forward

• Having covered how this program operates, I plan to
return to it and make changes in order to illustrate
things later on

• We can both benefit if you take it home, run it a few
times, experiment with changing parts of it, etc.
– You will be familiar with what it basically does when we create

different variations

– I will not have to go through a new set of greek letters every other
week :)

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

