NTNU - Trondheim
Norwegian University of

Science and Technology

A numerical solver for the advection equation

LY
www.ntnu.edu > Jan.Christian.Meyer@ntnhu.no

A}

Our objective

* Numerically integrating various functions accounts for a /ot of

applications in parallel computing
— It easily grows to run for a long time with complicated problems

* In order to look at our various programming models, we need

something to parallelize
— An example problem with a bit of integration fits well

— If we go through how it works now, we can use it without repeating what it’s for
later on

e TDT4200 is not a math class

— We'll use almost the simplest problem there is
— It's still necessary to understand how it works, though

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Advection and diffusion

* Many distributions of things spread out from where we have lots of
it towards where we have less, until it's in equilibrium

Heat

Gases

Water pollution
etc.

 Two effects contribute to this:

Diffusion is the thing’s own tendency to level out

Advection is how the medium it is in carries it along when moving

 Advection works much faster than diffusion

Try to heat your apartment with and without a fan next to the heating element if you
don't believe me

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Advection terms

* Let's just think in 1 dimension to start with

* There are three parts to the equation:
— U is the amount of whatever is spreading out
— tis the time axis
— X is the space axis

* |f we're standing in some position along X,
— dU / dtis the difference in how much U remains when time passes
— dU / dx is the difference in how much U there is to our left and right

— v is how quickly the medium is moving, and thus transporting some of
our U in either direction

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

The advection equation
oU oU

e Hereitis: - — . —

5t Ox

* Intuitively,
— dU/dx indicates whether we find more or less U in a direction
— v scales how quickly it will move from more to less
— dU/dt is how much the amount of U will have changed in a moment

— This thing is simple enough that we could just integrate it by hand and
obtain a function U(t,x), which would solve the whole problem

— That wouldn’t give us anything to compute, though, so we’'ll cut it up in a
way that is usually reserved for more complicated problems

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Taylor polynomials

A Az?
+ Recall that /(z+A82) = f(@) + J7 /(@) + 5 ")+

* The terms in a Taylor series shrink as the factorial of
the term’s index, so they rapidly become very small

* |f we cut it off at the 2" term, we’ll only be making a
small error, so we can use

flz + Az) = f(z) + Az f'(z)

and solve it for f'(x):
flz + Azx) — f(z)
Ax

—_— / ZE NTNU - Trondheim
Norwegian University of

Science and Technology

Discretizing dU/dx

(looking ahead)

* If we split our space axis into chunks of Ax, our
expression gives the gradient of a straight line
connecting the U-values in neighboring points:

A

/

sy

\

These are forward differences,
because we find the gradient at
U(1) from U(2) and U(1)

UO) Ax U(1) Ax

U(2)-U(1)

Ax

U2 Ax U@®)

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Discretizing dU/dx
(looking behind)

* If we split our space axis into chunks of Ax, our
expression gives the gradient of a straight line
connecting the U-values in neighboring points:

/\\ These are backward differences,
because we find the gradient at

U(2) from U(2) and U(1)

A

>
UO) Ax U@l Ax U@) Ax U@3)
NTNU - Trondheim
U!Z)-U‘l[B ;\'({rwcgianlLrillli\f}crsill)-' of
cience and Technology

Ax

LY
www.ntnu.edu ¥

Discretizing dU/dx

(looking in both directions)

* If we average the forward and backward estimates,
we get another estimate of the gradient at U(2):

\ These are central differences,
o T because we find the gradient at

A U(2) from U(3), U(2), and U(1)

>
Ui0) Ax U(1l) Ax U(2) Ax U@Q)
: H NTNU - Trondheim
U(Z!-U!l! + U(SI'U‘ZQ B g(].rwegianIL.:]]JW;TSEII‘\': of
cience and Technology
AX I AX

2

Simplifying the expression

* We can clean it up a little:
(for brevity, let Ui be the U-value at the i-th step)

Uit1—U; Ui—U;—1
Ar T As Uit1 — Ui

2 2Ax

* |f we substitute that as our estimate of dU/dx, the overall
equation becomes

oU B Ui+1 — Ui—l

NTNU - Trondheim
Norwegian University of
Science and Technology

%
www.ntnu.edu ¥

Discretizing dU/dt

(looking forward)

* If we similarly chop up the time axis in chunks of At,
we can do the same thing all over again:

o~ U+ AAtZ ~U(t)

or with Ukas the U-value at the k-th step,

SU Uk—|—1 L Uk

5t At

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

All together now

The whole advection equation has now become
1
Uttt —-uk o Ui — Ui
At 20x

which we can rearrange to obtain

At
Uktl — gk _
1 (QAQj (

On the left hand side, we have U for the next moment in time
— On the right hand side, we have only U values for the present moment in
time
If we start from a distribution of U-s in one moment, we can
* Calculate what it'll be in the next moment,
use the answer to calculate what it’'ll be in two moments,

* use that answer to calculate... I'm sure you see where this is goingg NTNU - Trondheim

Uz +1 Uzk—)

Norwegian University of
Science and Technology

%
www.ntnu.edu ¥

There’s one major missing piece

* The right hand side requires U-values from left and right neighbor
points

* What about the very first and the very last U-value?

* We need two extra values that are determined in some other way,
a.k.a. boundary conditions

* Three popular choices:
— Dirichlet (say that the outside points equal some constants)
— Neumann (say that the outside points mirror the inside points)

— Periodic (say that the last outside point equals the first inside and vice versa,
wrapping the domain around itself)

 We'll do periodic boundaries today

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

There’s one minor missing piece

* Our formula has a stability issue

Uktl = gk — Al

QAQZ‘ (Uz—|—1 Uzk—)

— We’re making a small rounding error for every time step, so sooner
or later the answer will consist mostly of error

— If we replace the U% term on the r.h.s. with the average of its
neighbors instead, we add some atrtificial inertia/friction/viscosity

— That way, we get a movement that dies out instead of one that
ultimately goes completely bananas:

Ur , +UF At
Uz'kH = = - - U+1 Uzk—l)

2 2Az (U
NTNU - Trondheim
Norwegian University of
Science and Technology

(This is called a “Lax-Friedrichs” method, but you don’t have to remember that)

A"
www.ntnu.edu ¥

Turning It into software

* We’'ll certainly need two arrays of U-values, with N
elements each:

“now” u[O][O] v U[O][N-1]

“next” u[1][0] = 0 u[1][N-1]

* Give them extra boundary elements, and fix the
iIndexing with a macro, for readability

Ul m 0 oo m UNN)

U_next(-1) m 000000 m U_next(N)

NTNU - Trondheim
Norwegian University of
Science and Technology

%
www.ntnu.edu ¥

The main stages of the program

* Initialize:
— Determine the number of points (N), the size of the x-axis (X_range), velocity (v),
space step (dx), time step (dt), number of time steps to calculate (max_iter), and
allocate the arrays.

— Fill them with some interesting U-values we can move around

* Integrate in a loop
— Copy the first/last values into the last/first boundary elements
— Apply the formula we worked out to all the other elements

— Switch the next-array into the now-array, and recycle the now-array as a place to
write a new step

— Repeat

* Finalize:
— Delete all the allocations and stop

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Seeing something happen

* If we just quietly worked out all the numbers, there
would be no way to tell what the solution is at the end

* There’s a variable ‘snapshot_freq’ in the code, which
triggers the program to write all the numbers in its U-
buffer into a file

* When we have a bunch of those files, we can plot
their contents in graphs, and get a visual confirmation

of how our function evolved over time
— | like to use ‘gnuplot’ for that kind of thing

NTNU - Trondheim
Norwegian University of
Science and Technology

A"
www.ntnu.edu ¥

Seeing something happen

* The hard-coded initial state consists of a large
displacement on the left

* It has a speed towards the right, and dies out over
time

00000000

00000000

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

This Is terrible software design

* | know, right?
— It's not meant to be maintained

* The variables don’t have descriptive names

— They’re chosen to resemble the terms in our expressions, so that they will be
easy to recognize

* The whole program state is global

— We don't really need any modularity/encapsulation, the whole thing consists of
fewer than 100 lines that only manipulate 2 arrays

* Everything is one long main()-function
— | wanted it to be readable from top to bottom without having to skip around.
— You can split it into sensibly named sub-functions if you wish

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

"data/00002.dat" binary array=512x512 format="%double’

cooooooooor
PRW RO~

There’'s also a 2D version

* It's easy to make

— Just add a y-velocity and a dU/dy term to the equation, discretize it
in exactly the same way as for x, and make the U-arrays two-
dimensional

— Mind the boundary elements in the indexing macros

* [t takes substantially longer to run

— 1D is easier to explain, but it doesn’t really give us a lot of work to
parallelize

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Going forward

* Having covered how this program operates, | plan to
return to it and make changes in order to illustrate
things later on

* We can both benefit if you take it home, run it a few

times, experiment with changing parts of it, etc.

— You will be familiar with what it basically does when we create
different variations

— 1 will not have to go through a new set of greek letters every other
week :)

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

