
  

1

Concepts of MPI

Jan.Christian.Meyer@ntnu.no



  

2

Today’s topic

• MPI is quite rich in abstractions and mechanisms for 
various purposes
– Many of them interact

• Before we look at the details of each, it may be helpful 
to briefly survey the whole
– Otherwise, some functions will have arguments that make no sense 

until their purpose has been mentioned

• Today, we’ll just cover a number of the general ideas, 
and then we can start digging into the details next time



  

3

Message Passing Interface 
(MPI)
• MPI is a standard specification for a (large) number of 

function calls, and what they’re supposed to do
• It aims to avoid specifying how to do things, the idea is 

that
– HPC vendors can supply implementations that fit their specific 

machines, and
– your code will be runnable on all of them, just at different speeds

• It’s been around since 1994
– many implementations have come and gone
– the ones we have now may disappear, and new ones will emerge



  

4

MPI runs parallel processes

• Multiple copies of the program are started through a 
launcher-program that tracks how to make 
connections between them
– “mpirun”, “mpi_exec”, “srun”, or similar, depending on your platform

• When you send data from one process to another, it 
gets its own copy
– If you want a number to be consistent between all processes, your 

code has to take care of it



  

5

MPI is SPMD
(Single Program Multiple Data)

• This four-letter acronym is not due to Flynn
– It’s more of a programming style than it is a type of machine

• The Wonderful IdeaTM is that P copies of the same 
program can do P different things if they have an 
identity-number that sets the copies apart

• MPI calls this number the rank of a process



  

6

Communication is two-sided
(mostly)

• If the process with rank 1 contains a statement like
“take these 4 numbers and send them to rank 2”

then the process with rank 2 must contain a statement 
like

“receive 4 numbers from rank 1, and put them in this 4-element 
buffer I have prepared”

• Every send must have a matching receive at the other 
end
– Sends that go nowhere may stop your program, or crash it later
– Receives that never receive anything stop your program



  

7

The SPMD view

• Even though we want ranks 1 and 2 to do different 
things, we can merge their actions into 1 program

• This is a pseudo-code rendition of the principle:
rank = who_am_i ()

if ( rank == 1 )
four_numbers = [1,2,3,4]

send ( four_numbers, 4, rank_2 )

else if ( rank == 2 )
four_numbers = [0,0,0,0]

recv ( four_numbers, 4, rank_1 )



  

8

That’s impractical

• Admittedly, yes
– but only kind of

• In the extreme case that no two ranks ever do the same thing, we 
might
– write P versions of the program
– concatenate them all in one file
– wrap each version in an if-statement that checked for a specific rank number

but matching up all the sends and receives would quickly create a 
hot mess.

• How do we even plan how many ranks to have in total?
– The P-versions approach would hardwire the code to run with a specific number of 

processes
– No more
– No less



  

9

MPI Communicators

• In addition to obtaining its own rank number, each 
process starts as a member of a “communicator”
– By default, there’s always one that contains every process we 

launched

– MPI calls it the “world” communicator

• Programs can find out how big it is
• For a p-process communicator, the ranks inside are 

always numbered from 0 to p-1



  

10

The SPMD thing again

• Armed with the size of the world communicator, we can, e.g. 
make a program that will send a message from the first to the 
last rank, regardless of the last rank’s actual number

• Here’s the updated pseudo-code:
rank = who_am_i ()

size = how_many_are_we ()

if ( rank == 0 )
four_numbers = [1,2,3,4]

send ( four_numbers, 4, size-1 )

else if ( rank == size-1 )
four_numbers = [0,0,0,0]

recv ( four_numbers, 4,  0 )



  

11

Other communicators

• If you want, you can divide the world communicator 
into sub-groups, to let some processes collaborate on 
one thing, and the rest to work on something else

World



  

12

Messages associate with a 
communicator
• In order to send and receive messages within a 

group, we must know its size and our rank within it
• The process that has rank 5 in world can have rank 0 

in subgroup 2
World

Subgroup 1 Subgroup 2



  

13

Virtual topologies

• The world communicator has no internal structure, everyone 
just gets a number for rank

• MPI lets you declare communicators that have structure, e.g. 
the Cartesian flavor, where every rank has a set of coordinates:

• This way you can send/receive

messages with “rank at (1,1)”

instead of having to calculate

an indexing scheme yourself

• We can get communicators shaped like arbitrary graphs as well, 
but this rectangular thing is common

(0,0)

(2,2)



  

14

Communication modes

• The point-to-point messages can be sent with 4 
different guarantees for how they are transmitted
– Standard

(Whatever your implementation has as default, more on this later)

– Synchronized
(Send-function will not return until reception is acknowledged)

– Buffered
(Explicitly manage the memory that’s used for sending/receiving)

– Ready
(Assume that the receiver has already initiated the receive)



  

15

Non-blocking communication

• Usually, send and receive operations cause the program 
to stop and wait for the message to come through, and 
only resume the program afterwards
– This is not 100% true, but close enough for now

• Non-blocking sending and receiving immediately returns a 
request instead, so that you can continue calculating

• In order to make sure that the message has gone/come 
through, you must issue a wait-for-completion call for the 
request later on
– Whenever you can no longer proceed without the comms being complete



  

16

Collective operations

• In order to save on the amount of point-to-point message 
passing, MPI offers a set of operations that every rank in a 
communicator must call before it completes
– Things like broadcasting values, finding a maximum value between 

all ranks, global sums, etc.

• These don’t require separate branches in code
rank = who_am_i ()

the_number = 0           // Every rank sets 0

if ( rank == 0 )
the_number = 42                            // Rank 0 sets something different

broadcast ( the_number, rank_0 )  // Everyone gets what rank 0 has



  

17

Scattering and gathering

MPI has some collective operations dedicated to
– splitting some large data set in equal parts, and 

distributing them among ranks
– receiving a number of equal parts, and putting 

them back together into a large data set

• This is a fairly common thing to want
• Kind of like specialized broadcasting operations

– but only almost



  

18

Synchronization

• MPI has a barrier mechanism that makes all ranks in 
a communicator wait until everyone has reached the 
barrier

• It doesn’t actually guarantee that communication is 
finished (because we can do background 
communication), but it lets you know that all ranks 
have reached a given statement

• Most valuable use: make sure that everyone is in the 
same place before you start measuring the execution 
time of what comes next



  

19

Derived data types

• The basic assumption of sending and receiving is that 
the message will be laid out as a contiguous array with 
equally sized elements

• This is not convenient if you want to send a data 
structure that has different types of variables inside

• It is also not convenient if you want to send e.g. a 
column from a 2D array that is stored in row-major order

• ...or indeed, a rectangular sub-array from it…
• etc. etc.



  

20

Derived data types

• MPI understands a handful of built-in data types
Integers, floating point numbers, characters, that sort of thing

• It lets you combine these into more elaborate structures
The outcome is a recipe for how to space out a non-uniform bunch of 
data

• Sending calls will automatically marshal the data type 
from its memory layout into a contiguous buffer

• Receiving calls will automatically un-marshal the 
contiguous buffer and recreate the memory layout at 
the receiving end



  

21

Parallel I/O

• When some data are distributed across a number of 
processes, the obvious way to collect them in a file is to 
appoint one of them as a kind of file-master, and
– collect all the pieces
– organize the file contents

• This increases the amount of sequential code in your 
application for no good reason

• MPI has a feature that lets all ranks open the same file, and 
write their data in different parts of it
– Probably still serializes things on your laptop, unless you’ve customized the 

OS installation
– Actually works simultaneously when writing is done on a parallel-friendly file 

system



  

22

Miscellaneous debris

• MPI can do some limited one-sided communication
– Provided that the receiver has registered a buffer it’s ok for others to write 

in

• It’s possible to receive from “anywhere”
– For searching problems, and other first-past-the-post methods that 

should report their result as soon as it has been found by anyone

• There are non-blocking collective operations
– We won’t need them for anything, though

• There is a performance profiling interface
– You can inject code that is run before/after every kind of MPI operation, 

so that you can instrument it without changing the source



  

23

That’s a lot of stuff

• Absolutely, I expect it to keep us entertained for a few 
weeks

• We won’t cover everything, though
• It is also not necessary to digest the whole thing before 

you can do useful things
...or indeed, ever – very few programmers have used every corner of 
MPI

• We’ll take it from the beginning
– A selection of 6 functions are all we need in principle

– The rest is convenience-functions and window dressing



  

24

Design philosophy

• MPI is the most extensive of the programming models we will 
discuss
– Why start there then?

• MPI is made with the express intention that it should never 
occupy your CPU unless you have given it permission
– By asking it to do something for you

• We have mentioned that data movement is the most expensive 
thing to do in modern computers
– MPI is all about data movement
– It makes all its data movement explicit, so that you can find the bottlenecks 

directly in the source code

• It’s easier to reason about ‘invisible’ data movement when 
you’ve handled it manually first


	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

