

1

Six-function MPI

Jan.Christian.Meyer@ntnu.no

2

Today’s topic

• We have taken a broad look at the major concepts in
MPI, without any details
– Just so you’ll recognize them

• I have claimed that it’s possible to start using MPI
with only a very few of them
– Six, to be exact

• Next, we will make a poorly designed MPI version of
our advection example
– Just to show that you can do it with the six basic functions

3

A quick recap

• We’ve mentioned that launching a program
executable gives you a process image with the state
of all its code and data in:

./my_program

stack

heap

data
text

4

MPI works with parallel processes

• It achieves this by launching your executable via an included program-
launching thing

• It’s usually called ‘mpirun’, but particular parallel systems may ask you
to use another mechanism with some other name

mpirun -np 3 ./my_program

stack

heap

data
text

stack

heap

data
text

stack

heap

data
text

rank=0 rank=1 rank=2

5

Initialization

• In order to be put in contact with its siblings, each
rank must begin by initializing the internal state of the
MPI library

• This can require information from the command line
arguments array, so you have to pass those along

int main (int argc, char **argv) {
MPI_Init (&argc, &argv);
<…rest of program comes here...>

6

Finalization

• What goes up must come down, so there’s a function that
cleans up all memory that was allocated during initialization
as well

• That one doesn’t need any arguments, all relevant
information has been established internally

int main (int argc, char **argv) {
MPI_Init (&argc, &argv);
<…rest of program goes in the middle...>
MPI_Finalize();

}

7

We can observe a few things already

• Every MPI function is called something like
MPI_Abcd_efg_h

– “MPI_” to begin with
– First letter in the function name is capitalized
– The rest of the name is all in lowercase, with underscore separation

• MPI uses arguments to pass variables in and out of
functions
– For the vast, vast majority of functions, the return value is an error code

that indicates whether the function completed in style or not
– In order to obtain the answer from a function, you pass it a pointer to an

area you have sized up to contain it, and let the function write it there

8

Why use pointer-arguments instead of C’s own
return values?

• There is actually a reasonable rationale behind this, you will
find that system libraries and many other libraries do it as well

• The purpose is to give the programmer complete control over
allocation

• If you’re coming from an OO language, it’s tempting to build
‘constructors’ for your structs like this:

my_thing * create_thing(int a, int b, int c) { /* malloc in here */ }
void destroy_thing (my_thing *dead) { free (dead); }

and use them like this
my_thing *newThing = create_thing (1,2,3);
destroy_thing (newThing);

• This will force all my_things into the heap

9

Allocation on the user side
• If create_thing (…) only writes at pointers you pass it, you can

make things in both of these ways:
// On heap
my_thing *heapThing = malloc (sizeof(my_thing));
create_thing (heapThing, 1,2,3);

// On stack
my_thing stackThing;
create_thing (&stackThing, 4,5,6);

• You don’t have to like this style or use it yourself, but MPI
does, and this is the reason
– I also tend to use it, but again, you don’t have to, it’s just a common practice

10

Back to MPI

• Now that we can start some processes, we’ll need their
ranks and total number

• As we know, the rank of a process is always connected with
the communicator it is acting as a member of

• Two functions tell us what we need for now:
int rank, size;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

• The first returns different numbers (0 through p-1) for each
process, the second returns the same number everywhere

11

That was 4 functions
• Only two more to go
• We already have enough to write an MPI-enabled hello

program, though
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
int main (int argc, char **argv) {

int size, rank;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf (“Hello world, I am rank %d out of %d\n”, rank, size);
MPI_Finalize ();
exit (EXIT_SUCCESS);

}

12

It can already be (slightly) useful

• Suppose you have a problem where every piece is
independent from all the others

(running the same program on 256 files, for instance)

you could
– Start some processes and get their ranks
– Deduce a separate set of file names for each rank
– Handle all the files in exactly the same way

• There are easier ways to do just this, though
• The literature calls this type of task

“embarrassingly parallel”

13

Sending and receiving

• The function signature for sending looks like this:
int MPI_Send (
 const void *buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm
);

• The return value is usually the constant MPI_SUCCESS,
its other possible values are in the documentation

14

Sending: what

These arguments are straightforward:
int MPI_Send (
 const void *buf, // Pointer to the data to send
 int count, // Number of elements to send from it
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm
);

15

Sending: where

The destination process will be the one that has rank
dest in the communicator given as final argument

int MPI_Send (
 const void *buf,
 int count,
 MPI_Datatype datatype,
 int dest, // Rank of the recipient
 int tag,
 MPI_Comm comm // Communicator to send in
);

16

Sending: how much

Message length (in bytes) is the count multiplied by a size that
comes from the 3rd argument

int MPI_Send (
 const void *buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm
);

• There’s a list of primitive data types to choose from, like
MPI_INT, MPI_DOUBLE, MPI_BYTE, etc.

17

Why these MPI_*** data types?

• First and foremost, because a type isn’t a value that
you can pass as an argument in C or Fortran

• Because MPI needs to pass types around, it has lists
of constant values that mirror basic types instead
– Slightly impractical

• There’s a lot more to say about MPI_Datatype,
though, but we will save it for another day

18

Receiving
The argument list is almost the same

int MPI_Recv (
 const void *buf, // Where to put the result
 int count, // Number of elements
 MPI_Datatype datatype, // Type of elements
 int src, // Rank of sender
 int tag,
 MPI_Comm comm, // Communicator to send in
 MPI_Status *status
);

• The pointer to a status object allows you to get information about
how the message was sent after you have received it

• When we don’t need it for anything, it can have the
value MPI_STATUS_IGNORE instead

19

Sending and receiving: tags
• Both MPI_Send and MPI_Recv have an ‘int tag’ argument we

haven’t mentioned
– Ordinarily, MPI pairs the correct Send with the right Recv by checking size, type, source

and destination

BUT
– It is also possible to have multiple messages on the way at the same time
– They might have the same sizes, types, sources and destinations

• The ‘tag’ is used to distinguish between messages in such situations
• You can just choose any number for a tag, but it has to be the same

number in an MPI_Send call as in the MPI_Recv call that is intended
to get the message

20

That was all six
• It is possible to implement all the rest of MPI’s facilities using these six

functions
MPI_Init
MPI_Finalize
MPI_Comm_rank
MPI_Comm_size
MPI_Send
MPI_Recv

• In other words, all communication patterns can be reduced to some
sequence of point-to-point messages

• We have some reasons not to do that anyway
– It’s extra work
– It can be quite complicated for some of the patterns
– There may be machine-specific tricks for certain patterns that make their implementations

faster than what you can portably do with Send+Recv

21

Example time

• Now that we have a working set of operations, I’ll
discuss how we can use them to parallelize the
advection example from before

• It’s not going to be super smooth, because we’ll be
doing it only with the functions we have discussed
– Just to prove that we can

• Hopefully, doing everything manually first will
demonstrate what happens when it’s done semi-
automatically later

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

