
  

1

The advection equation using six-function MPI

Jan.Christian.Meyer@ntnu.no



  

2

The example code archive

• I put another copy of the sequential advection code into 
“02_advection_sequential”

• It’s pretty much the same thing as before, but I have 
– Divided the code into (hopefully) aptly named functions, and
– Increased the problem size in order to make it run for a little bit
– If you want to adjust the size yourself, mind that different sizes of output 

files require a modification to the plotting script, the number of elements to 
plot is hardcoded in there

• The remaining two directories contain
– A partial version that can only initialize the program and save its state
– A complete version that includes the numerical solver loop
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We need to split up the work

• We have a long, linear array, and some number of 
workers to employ
– Let’s draw 4, just as an example

• Here’s a popular, but not-so-good solution
– Allocate full array for everyone, but just work on part of it

– Add up everyone’s partial solutions at the end
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Why would anyone do that?

• It’s really simple to work out array indices when 
everyone has the same coordinate space
– You’ll see in a minute

• It’s still not a great idea, though
– It limits the maximum problem size to the amount of memory 1 rank 

can allocate

• I am not going to say that it’s bad in every context
– Small problems are also worth solving

• I am going to say that it’s an impediment to scalability
– So there
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Another way to split work

• Divide the problem size by the rank count, and 
allocate separate parts

• We get to concatenate these when saving the state 
of the entire domain
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Global elements 0-3, local indices 0-3

Global elements 4-7, local indices 0-3

Global elements 8-11, local indices 0-3
Global elements 12-15, local indices 0-3
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From the boundary line

• The way we allocated/indexed the array in the serial version, we 
added 2 extra points for the boundary condition

...and gave them indices -1 and N…

• Let’s do that everywhere here, too

• Only U(-1) by rank 0 and U(4) by rank 3 will actually represent the 
problem domain’s boundary

• We’ll have use for the others as well
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Initialization

• Since we’ve split the coordinates,
– Rank 1 must know that its element 0 is global element 4
– Rank 2 must know that its element 0 is global element 8
– Etc.

• One possible solution:
int_t my_origin = rank * (N / size);

• This requires all parts to be equally large
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Initialization

• What if the domain size isn’t divisible by the number 
of ranks?

• There are three schools of thought:
– Stop the program, and demand a particular problem-size / rank 

count relationship

– Give the last rank less work (either in a smaller allocation, or 
padding out the domain data with zeros at the end)

– Give 1 extra element to a suitable subset of the ranks
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Initialization

This week’s example code goes for the last option:
local_sizes = malloc ( size * sizeof(int_t) );
for ( int_t r=0; r<size; r++ )
    local_sizes[r] = (int_t)( N / size ) + ((r<(N%size)) ? 1:0);

• The result is that every rank gets an array with the others’ 
subdomain sizes in it
– Per the illustration, local_sizes would contain [ 5, 5, 4, 4 ]
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(Example: size 18 problem with 4 ranks)
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Initialization

• Armed with the knowledge of how big the preceding problem parts 
are, each rank can calculate what its own origin index corresponds 
to globally

int_t my_origin = 0;
for ( int_t i=0; i<rank; i++ )
    my_origin += local_sizes[i];

• A small amount of extra typing, but the code only has to run once, 
and it’s very short

• Now that we can calculate x-positions from the indices, we can 
plug in the function that creates the initial advection state

• Each rank can set up its part separately
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PROTIP:

A picture tells a 1000 words

• The first thing I do when starting a parallel program is to 
invent a way to draw pictures of the global state
– Parallel programs run in a mish-mash order that can be different every 

time you launch the program, so debugging with print statements gets 
messy

– It’s more feasible if you make every rank write in a separate file, but that 
still makes it hard to see the interplay between them

• When doing this, it’s important to make double-triple 
sure that your visualization actually matches the 
program state
– Bugs that create inaccurate pictures come back to haunt you later
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Saving global state

• The files we used in the sequential code are just a 
long list of floating point numbers stored in binary

• To make that again, we’ll need to concatenate the 
numbers from all ranks, in rank order

• We can nominate rank 0 to be our “I/O-master”, who 
can collect all the parts and put the file together
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Rank 0 needs an extra buffer

• Because of the way we partitioned, rank 0 will always 
have (one of) the biggest sudomains, so we can use 
its size

• Step 1:
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Write this in the file Allocate an extra buffer
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Rank 0 needs an extra buffer

• Rank 0 can now loop over the remaining ranks, and 
receive their sub-domains in the buffer

• Step 2:

• Steps 3 and 4 are just like step 2
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Rank 1: send this to Rank 0 Rank 0: write this into the file
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This is a bottleneck

• We’re serializing the execution, rank 0 has to wait for all the 
ranks in turn, and do something sequential for them

• Another way would have been to let the ranks take turns to open 
the file and append to it
– Still sequential, but with less communication

• We could make each rank save its own file, and concatenate 
them after the program has finished
– Parallel, but creates more logistics afterwards

• Yet another would be to have everyone write at the same time
– But we’re only doing 6-function MPI today

• Saving doesn’t happen on every iteration anyway
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The example code archive

• This is the state of the code in the subdirectory 
“03_init_and_cleanup”

• It divides the problem and makes allocations
• It initializes all the arrays
• It saves the global initial state in a file
• It releases all the arrays again
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Adding the solver

• If we draw the arrays of the ranks side-by-side, we 
can see an issue with the numerical method:
– The boundaries are at ranks 0 and 3, but the calculation needs two 

neighbor values everywhere

Rank 0 Rank 1 Rank 2 Rank 3
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The value of good neighbors

• The last value by rank 1 needs the first value from 
rank 2 as a neighbor
– We can send it a copy

• The first value by rank 2 needs the last value from 
rank 1 also
– We can send copies it in the other direction as well
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There is actually one more small problem lurking here, 
but we will deal with it when we talk about modes

Border exchange

• This operation is common, and it is called a border exchange
• The artificial extra-points are often called ghost points, together they 

are often referred to as a subdomain’s halo
• Since we’re using a periodic boundary, border exchange takes care of 

that too, as long as we connect the first and last ranks:
left_neighbor  = ( rank + size - 1 ) % size;
right_neighbor = ( rank + size + 1 ) % size;

• Adding the extra ‘size’ here is just because moduli of negative numbers 
aren’t a thing in C
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Adding the solver

• When we’ve taken care that all the surroundings of 
the solver are as it expects, it can simply be used the 
way it was

• Only difference is that its loop has to go from 0 to the 
rank’s subdomain size, instead of to N

• That’s the code, let’s see if it runs any faster…
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