

1

Collective operations

Jan.Christian.Meyer@ntnu.no

2

Today’s topic

• We’ve looked at how the rank of a process can be
used to make it act differently from every other, by
branching into statements that only apply to 1 rank

• We’ve also looked at how calculating different
arguments based on rank can make the same
statement do different things by different ranks

• Today, we’ll look at MPI calls that are specifically
made to be used in the second manner

3

We have already seen collective code

• Instead of writing something like
if (rank == 0)

for (int_t i=0; i<N/2; i++)

 c[i] = a[i] * b[i];

else if (rank == 1)
for (int_t i=N/2; i<N; i++)

 c[i] = a[i] * b[i];

we can write
bounds[2] = { rank * N/2, (rank+1)*N/2 };

for (int_t i=bounds[0]; i<bounds[1]; i++)

 c[i] = a[i] * b[i];

and make both ranks use the same code for different data.

4

Collective operations

• MPI’s collective operations are function calls that
expect this style of program

• All ranks in a communicator must participate in its
collective operations
– The idea is to place it somewhere in the control flow where all the

ranks will come through, and make the exact same call

– You can put it inside conditional code as well, but there has to be a
copy along every code path

• If fewer than all ranks make the call, it will hang until
it times out and crashes

5

The simplest collective:

MPI_Barrier (MPI_COMM_WORLD);

• This does not actually do anything
– It just requires all ranks in WORLD to call it
– Nobody returns from their call before everyone has made it

• It’s a synchronization feature of sorts
– The ranks won’t actually all return from Barrier at exactly the same moment
– It’ll be close, though
– If one or more ranks were lagging behind, this will definitely bring them up to

speed (at the expense of waiting for them)

6

MPI_Barrier is not a memory fence

• A memory fence is an operation that forces all
committed work to be completed before continuing

• MPI_Barrier does no such thing
– It just makes everyone exchange some empty messages to check on

each other’s progress
– If you have background messages in transit, they may still be in

transit after the barrier
– If you have written data that is waiting in a buffer, barrier will not flush

it
– If you have pending requests for work, barrier will not clean them up,

you still have to wait for their completion to finalize them

7

What’s it for, then?

• It can help a lot with instrumenting your program’s
performance
– More on that in a minute

• It can help a little with debugging
– You can use it to guarantee that everyone has reached a particular

point in the program (as long as you remember what that means)

• I have not seen a program that depended on a barrier
in order to get the right answer
– If you make one, you’re probably inventing something strange

8

Broadcast

• Here’s a more interesting collective:

int MPI_Bcast (
void *buffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm communicator

);
• You’ll recognize the first three arguments, they’re just like for

Send and Recv
• The last one isn’t surprising either

9

MPI_Bcast is a rooted collective

• The root argument designates a rank that acts as the
‘master’ rank for the operation

• Broadcast, as the name implies, takes data from one
rank and gives it to everyone
– On the root rank, the memory buffer will be read and transmitted

– On all the other ranks, data will be received and written into the
memory buffer

(by contrast, MPI_Barrier has no root rank, everybody’s equal)

10

Let’s do a global sum

• We can calculate something simple without the complexities of neighbor
points, border exchanges, boundary conditions, etc.

• The arctangent of 1 is pi divided by 4:

1

1π
4

11

The derivative of arctan(x) is 1/(1+x²)

• Here we have it, from x=0 to x=1
• The area between this curve and the x-axis is π/4

12

We have an integration engine
• We can estimate the area under the curve with a

bunch of rectangles
– They can have width h

– Their height will be 1/(1+x²) at the end of the interval

– That gives us the area

13

Tales from the code archive

• estimate_pi.c does what we did with the file saving
issue in last lesson’s parallel advection eq. solver:
– Rank 0 includes its own partial result first

– Rank 0 then waits for messages from all the rest, in order

– All other ranks send their partial results to 0

• It works, but
– It’s long-winded and error prone to write

– It forces a sequence upon the reception of messages

– Adding up a global sum is a common thing to do, so we can use a
collective operation instead

14

Rooted reductions

int MPI_Reduce (
const void *sendbuf,

void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op op,

int root,

MPI_Comm comm

);
• The send-buffer, count, datatype, and communicator are like the

MPI_Send arguments, and point out the data that each rank will
contribute to the total

15

Rooted reductions

int MPI_Reduce (
const void *sendbuf,

void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op op,

int root,

MPI_Comm comm

);
• The recv-buffer only has to exist at the root rank, it is where the

total of all contributions will be placed
• It won’t be used on the other ranks, you can make it NULL there if

you wish

16

Rooted reductions

int MPI_Reduce (
const void *sendbuf,

void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op op,

int root,

MPI_Comm comm

);
• The MPI_Op is the name of an operation that can be applied to

combine the contributions from arbitrary pairs of ranks
• There’s a list of them, including MPI_SUM, MPI_PROD, MPI_MAX,

MPI_BAND (‘bitwise and’), and so on...
• The main thing is that they have to be commutative

17

The Pi example with reduction

• estimate_pi_reduction.c replaces our point-to-point
construct with a collective op. that takes a single line
of code

• There is also an unrooted MPI_Allreduce
• It’s the same as Reduce, except that

– There’s no root argument

– recv-buffer has to be allocated on all participants, because
everyone gets a copy of the result

• estimate_pi_allreduce.c uses that instead

18

There are quite a few collectives

• Scatter ← partition data into equal-size chunks
– Scatterv ← or chunks of individual, different sizes

• Gather ← collect equal-size chunks into a whole
– Gatherv ← or chunks of individual, different sizes

• Scan ← Accumulate intermediate parts
• Allgather ← Gather by everyone
• Alltoall ← Total exchange (from everyone to everyone)

– Alltoallv ← also available with different-sized chunks

• Some include computations along the way, others are just data
movement

19

There’s another 6-function MPI

• Everything MPI can do can also be implemented using
selected collectives
– MPI_Init
– MPI_Finalize
– MPI_Comm_rank
– MPI_Comm_size
– MPI_Bcast
– MPI_Reduce

• The example we didn’t implement last time where all ranks
have large, same-size allocations does the job
– Point-to-point messages can be done by designating an area per process,

and reducing the entire global array every so often

20

Collectives hide different complexities

• Some are terribly expensive
• Others are not so expensive
• We’ll look at estimating their cost next time

– It’s not an accurate science, but ballpark estimates are already
useful

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

