

1

Point-to-point communication modes
(and other variants)

Jan.Christian.Meyer@ntnu.no

2

From last time

• As we noted previously
– This send/recv pattern has an issue
– The example code works anyway

• The issue is that the pattern is prone to deadlock
• Our program says

– Send left
– Receive from right
– Send right
– Receive from left

• If the first Send cannot return until anyone has received it, the
program will stop at step 1
– Everyone in a circle has a left neighbor

3

The manual resolution

• We know how to fix this!
• If half the participants send first and the other half receive

first, the cycle will be broken:
if (rank % 2 == 0)

Send

Recv

else
Recv

Send

• Mutual exchanges are common, though
– It would be a hassle to pay attention to deadlocks every time

4

One MPI resolution

• Because mutual exchanges are so common, MPI has a very
own function dedicated to combining one Send and one Recv:

int MPI_Sendrecv (
const void *sbuf, int scount, MPI_Datatype stype, int dest,

void *rbuf, int rcount, MPI_Datatype rtype, int source,

MPI_Comm communicator, MPI_Status *status

);

• It is literally just the argument lists of the Send and Recv
rolled into one

• Its entire purpose is that it comes with a guarantee that the
pair will not deadlock

5

...but why does the example work?

• The ‘default’ MPI_Send is the one everyone is expected to use
by default
– It should be optimized for the common case

• Waiting for messages to be acknowledged takes time
• It is usually faster to

– Copy the message into an MPI-internal buffer
– Promise to send it as soon as possible, and return to caller

• Network interfaces usually feature little processors that can
keep this promise without disturbing the CPU
– Thus, everyone buffers their Sends, and start their Recvs
– The example only sends 8 bytes in each direction

6

Internal buffering is not always faster

• When making the internal message copy takes longer than just
sending the message right away, it’s not efficient anymore

• The message size that crosses this limit is usually impossible
to determine exactly, but
– It’s possible to estimate more-or-less reliably, and
– MPI implementors often have a better opinion about it than MPI user programs

• Thus, beyond some “big enough” message size, MPI_Send
switches to behaving like a blocking function
– The exact size is implementation-dependent
– It’s just practically always much bigger than 8 bytes

7

Communication modes

• As we can see, the behaviour of MPI_Send can vary
with what kind of protocol is guaranteed by the
implementation
– Even when the argument list is exactly the same

• MPI gives us four different variants, these modes
come with different behaviours and assumptions:
– Standard mode

– Synchronized mode

– Buffered mode

– Ready mode

8

Standard mode

• This is the MPI_Send we already know
• Its arguments are the buffer-pointer, count, type,

destination, tag, and communicator, as discussed
previously

• It’s at liberty to do whatever is “best on this machine”,
and return control as soon as it can
– Provided that it’s able to send the message correctly no matter

what else the calling program gets up to

– That is, the program must be able to modify the buffer contents
without corrupting the copy that is being sent

9

Synchronized mode

• This one’s called MPI_Ssend
– The argument list is the same as for standard mode

• A synchronized send call will not return to the caller before the
receiving process starts receiving

• It may be a little slower, but gives you a different kind of
consistency between how far the communicating processes
must have come when it returns
– It synchronizes their progress

• If you try our mildly broken border exchange with MPI_Ssend
instead of MPI_Send, it will always deadlock
– Regardless of message size

10

Buffered mode

• If you want to send myriads of tiny messages at a
time (without warning MPI first), it will cause myriads
of tiny buffer allocations and deallocations
– With enough messages, this takes time (and fragments heap

memory)

• MPI_Bsend lets you allocate the buffer yourself, so
that you can make it one long, contiguous memory
range
– As long as you make sure it has space for all the upcoming

messages together

11

Allocating the buffer

• MPI_Bsend still has the same argument list as the
other sends

• Since it expects us to have made a buffer for it, we
have to register that before using Bsend:

int buffer_size = n*sizeof(msgsize) + MPI_BSEND_OVERHEAD;

int *my_buffer = malloc (buffer_size);

MPI_Buffer_attach (my_buffer, buffer_size);

• When we’re finished with our Bsending, the registration
can be released again:

MPI_Buffer_detach (&my_buffer, &buffer_size);

12

Ready mode

• MPI_Rsend has the liberty to bypass protocols that
establish whether or not the recipient is ready

• Its use indicates that the programmer is absolutely,
100% confident that the matching Recv call has
already been made

• If the matching Recv call has not yet been made, it is
an error to use Rsend, and its result is arbitrary

13

Receiving all this stuff

• There are no modal variants of MPI_Recv, it takes in
messages from all of the above
– As long as the arguments match

• The sender decides how to handle the transmission,
because it’s the one who can do things differently
depending on the acknowledgment from the other
side

14

Non-blocking communication

• All the Send variants we’ve covered are blocking
– Control doesn’t return to the caller until transmission has been

guaranteed

• There are also non-blocking variants of these calls
• This is not another mode

– It doesn’t affect the mechanics of data movement

• It’s a natural thing to discuss along with the modes
anyway

15

Non-blocking send

int MPI_Isend (
const void *buffer,

int count,

MPI_Datatype type,

int destination,

int tag,

MPI_Comm communicator,

MPI_Request *request

);

• It’s mostly the same as before, but it has an additional
argument
– It’s an output, you hand some memory over to MPI, and it writes there

16

This returns immediately

• The idea of Isend is that it can whisk the message away into
the background, and send it later at MPIs own convenience

• This leaves your program free to do something else in the
meantime

• When you finally need to make sure that the transfer has
completed, you wait for the request-thing to say that it’s
finished

int MPI_Wait (MPI_Request *req, MPI_Status *stat);
– We can use MPI_STATUS_IGNORE here as well, if the status object is not

needed for anything

17

We can have many of these

• If we make an entire array of MPI_Requests
MPI_Request my_reqs[42];

and attach them to different non-blocking sends,
for (int m=0; m<42; m++)

MPI_Isend (

 &msgs[m], 1, MPI_INT, dst, 0, MPI_COMM_WORLD, &my_reqs[m]

);

we can wait for them all at once:
MPI_Waitall (42, my_reqs, MPI_STATUSES_IGNORE);

– MPI_STATUSES_IGNORE is like its singular counterpart, but it type-checks as
an array of ignores instead of just 1

18

Communicate vs. compute

• Relatively speaking, communication calls are much
more expensive than local operations

• A rule of thumb for performance programming goes:

 “Send early, receive late”
• The idea is that if you can compute a nice result while

your messages are underway, you won’t waste CPU
cycles while sitting around in the meantime

• Overlapping communication and computation is a
popular application of MPI_Isend

19

Beware of false assumptions

• MPI_Isend does give your MPI implementation the opportunity
to run communication in the background

• If you measure it, you will also find that most of them actually
do, at least up until some critical message size

• However, they are not obliged to
– The MPI standard doesn’t actually require anything at all to happen until you

issue the wait call on the request

• Non-blocking sends were originally introduced as yet another
way to prevent deadlock in mutual exchanges
– You can use them for overlapping, but take care to measure that it works on the

machine you are using

20

Non-blocking comms and modes

• We have a full range of non-blocking counterparts to
everything we’ve talked about:

MPI_Isend

MPI_Issend

MPI_Ibsend

MPI_Irsend

MPI_Irecv

• There are even non-blocking collectives
– They were only introduced in MPI 3.0, though, so you won’t see

them in a lot of production code yet

21

Persistent communication

• The MPI_Request-objects of Isend also have another
application

• If you’re going to use the same communication pattern
over and over

(e.g. running neighbor exchanges every iteration)

you can let MPI prepare them once and for all, and just
call on them every time you want to activate them
– It saves a little bit of time with setting up the transmission
– It saves a bit of code complexity in the middle of a loop that you’re

probably filling up with other complicated expressions

22

Persistent sending and receiving

All our sending and receiving calls can be initialized
like this:

int MPI_Send_init (<all the usual stuff>, MPI_Request *req);

int MPI_Recv_init (<all the usual stuff>, MPI_Request *req);

triggered like this:
int MPI_Start (MPI_request *req);

(there is also an MPI_Startall that takes a count and an array of
requests)

and waited for if they’re non-blocking, as before.

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

