

1

Timing, scatter, and gather

Jan.Christian.Meyer@ntnu.no

2

Today’s topic

• We’ve talked a lot about processors, networks, and
operations, and called them “fast” or “slow”

• How long do they actually take?
• The only way to find out precisely is, sadly, to run

them and see
• We can make some educated guesstimates, though

3

The precise way: run it and see

• Unsurprisingly, MPI has a clock

• It’s one of the very few functions that responds with a return value that isn’t
an error code:

double MPI_Wtime(void);

• The answer is some number of seconds, represented as a double-
precision floating point value

• The ‘W’ is short for walltime, which means it measures how much real time
passes, regardless of
– Whether it’s spent on your program or not,
– Whether it’s spent in system calls, libraries, or your own expressions
– Whether it’s spent by 1 or 1000 ranks
– Etc.

• It’s meant to be like a clock on the wall that everyone can see

4

Timing in a single rank

• There’s no MPI requirement for what calendar year, time
zone, country, or parallel universe the clock is relative to
– It’s just some number of seconds

• That’s ok, because we mainly want to measure
differences in it:

double t_start = MPI_Wtime();

do_something_useful();

double t_end = MPI_Wtime();

printf (“Something useful took %lf seconds!\n”, t_end – t_start);

• Hey, presto!

5

Timing with many ranks

• Program stages with communication in them are subject to ranks waiting
somewhat unpredictably long for each other
– Some may have been held up previously, and arrive late to the stage you’re timing

• In order to isolate that your timings are only affected by the operations in
the section you want to time, synchronize the ranks first:

MPI_Barrier (MPI_COMM_WORLD);

double t_start = MPI_Wtime();

do_something_useful();

double t_end = MPI_Wtime();

printf (
“Something useful took %ld seconds on rank %d!\n”, t_end – t_start, rank

);

• You get P different timings still, but you can collect them, find the
average, variance, median, etc. etc. and figure out how long things take.

6

Theoretical guesstimates

• Suppose we are posting letters in the mail instead of
sending bytes across wires

• A tiny postcard will take some amount of time to get
from here to Tipperary (or wherever)

• A large box will take a similar amount of time, even if
you can put more stuff in it

• This interval is connected to the distance from A to B,
rather than the message

• Let’s call it latency, and write α

7

Postcards vs. boxes

• The difference between the postcard and the box is how much
stuff gets moved

• Packing and unpacking the box takes additional time, and it’s
additional labor for whoever is transporting it

• Network capacity is usually measured in some multiple of
[bytes / second], we call it bandwidth and write β

• Equally interesting from a message passing perspective, is the
inverse bandwidth β-1, measured in [seconds/byte]

• That is, how much transfer time do we add by sending
additional bytes

8

Approximate communication time

• When we know the size n of our message, we can estimate
the transmission time as the sum of latency and n times the
inverse bandwidth:

 Tcomm(n) = α + n β-1

• Because of the analogy with the mail system, this estimate
is sometimes called the “postal model”

• I call it the Hockney model, because it was first published
by one Roger W. Hockney

• Still others call it the pingpong model, for reasons that will
imminently be made clear

9

Hockney’s equipment

• Roger developed his model in order to estimate
message costs on the Intel Paragon machine
– The computer museum here at NTNU still has one

– It doesn’t run any more

• Communication links were equally fast throughout the
entire machine

• Therefore, the α and β-1 could be measured between
any pair of processors, and characterize the whole
contraption

10

Hockney’s experiment

• The ping-pong test of communication speed goes as follows:
– Start the clock

– Repeat “a lot of” times:
• Send message from A to B (ping)
• Send message from B to A (pong)

– Stop the clock
– Divide the time difference by 2 (for both directions), and the number of

messages

• The “lot of” times have to be adjusted to whatever makes the
procedure last long enough that you can reliably time it
– That depends on the speed of the equipment you’re using

11

Extracting α and β-1

• In order to find the latency, we can do the ping-pong test
with a massive number of either empty or 1-byte
messages
– This way, latency will dominate the time taken
– 1-byte messages are only necessary if your machine skips empty

messages

• In order to find the inverse bandwidth, we can do the
ping-pong test with a smaller number of huge messages
– This way, bandwidth requirements will dominate the time taken
– Your choice of “huge” should reflect how many layers of the memory

hierarchy you want the procedure to account for

12

In modern times

• The days of uniform latency and bandwidth are long gone
– The cost of sending messages between adjacent cores on a chip is wildly different from

the cost of sending them to another computer across the room

• If you want to make sense of ping-pong results nowadays, you have
to measure as many different α/β pairs as you have types of links in
your platform

• It can still be useful, though, if you are careful about where your ranks
are running

(There are also a couple of statistical techniques to make the
measurements more stable and reliable, but I won’t bother you with
them in TDT4200)

13

Latency lags bandwidth

• Latency is often the smaller part of transmission time
• It is, however, very difficult to improve upon:

– Bandwidth can be expanded by adding extra lanes to the
interconnect fabric

– Latency is ultimately restricted by the speed of light, nothing can go
faster from A to B

• Research in parallel computing is eagerly investigating
latency-masking techniques
– We can’t get rid of it, but we can do something useful in the meantime
– Overlapping computation with MPI_Isend is one such technique

14

Back to the MPI stuff

• Out of the collective operations, we only looked at
barrier, broadcast and reduction

• I won’t go through all of them (they’re in the
documentation), but two more are in common use:

• MPI_Scatter takes a huge lump of data on one rank
and distributes parts of it around

• MPI_Gather collects distributed parts into a huge
lump of data on one rank

15

MPI_Scatter

• This is another rooted collective, like Bcast and Reduce

• I’ve illustrated it with 0 as the root

• Note that the root also gets a rank-sized piece of the data,
even though it already has a copy

Rank 0

Rank 1 Rank 2 Rank 3

42
64

128
79

64 128 79

42

16

Scatter arguments

• They look pretty much the same as Sendrecv
int MPI_Scatter(

 const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int root, MPI_Comm comm

);

• The send-{buf,count,type} are only relevant on the root rank
• Mind that the root’s send buffer must contain p times as

many elements as the sendcount, for p participants
– e.g. if you’re scattering to 4 ranks, with a sendcount of 1, there has to be 4

elements in the buffer

17

MPI_Gather

• This is the same thing, just in the opposite direction

Rank 0

Rank 1 Rank 2 Rank 3

42
64

128
79

64 128 79

42

18

Gather arguments

The list is the same as before:
int MPI_Gather(

 const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int root, MPI_Comm comm

);

• This time it’s the recv-{buffer,count,type} that are only
relevant to the root

• Mind the size of the receive-buffer

19

Analyzing a collective operation

• There can be multiple ways to implement collective
operations

• Suppose we use a linear approach to scatter N
elements from rank 0 in a collective of p ranks
– Just let rank 0 send all the messages, one after the other

• There will be (p-1) latencies
• Each send requires (N/p)β-1 of the bandwidth, so

20

Scatter using a binary tree
• Message sizes can halve with every step
• P0 sits on the critical path

P0

P4P0

P2 P6P0

P1 P3

P4

P5 P7P2 P4 P6P0

time

α+(N/2)β-1

α+(N/4)β-1

α+(N/8)β-1 α+(N/8)β-1

α+(N/4)β-1

α+(N/8)β-1 α+(N/8)β-1

21

Conclusions from the comparison

• For scatter, we can save some latency by choosing
communication patterns cleverly

• It doesn’t make any difference to the bandwidth
requirement

• That stands to reason, because rank 0 has to push
the same amount of data out the door either way

22

In reality

• We glossed over the fact that not all links are equal
• Still, we figured out something about the two

communication patterns, independent of platform
details

• Dissecting communication patterns like this is a
handy skill

• You can try it with reductions at home

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

