
  

1

Timing, scatter, and gather

Jan.Christian.Meyer@ntnu.no



  

2

Today’s topic

• We’ve talked a lot about processors, networks, and 
operations, and called them “fast” or “slow”

• How long do they actually take?
• The only way to find out precisely is, sadly, to run 

them and see
• We can make some educated guesstimates, though
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The precise way: run it and see

• Unsurprisingly, MPI has a clock

• It’s one of the very few functions that responds with a return value that isn’t 
an error code:

double MPI_Wtime( void );

• The answer is some number of seconds, represented as a double-
precision floating point value

• The ‘W’ is short for walltime, which means it measures how much real time 
passes, regardless of
– Whether it’s spent on your program or not,
– Whether it’s spent in system calls, libraries, or your own expressions
– Whether it’s spent by 1 or 1000 ranks
– Etc.

• It’s meant to be like a clock on the wall that everyone can see
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Timing in a single rank

• There’s no MPI requirement for what calendar year, time 
zone, country, or parallel universe the clock is relative to
– It’s just some number of seconds

• That’s ok, because we mainly want to measure 
differences in it:

double t_start = MPI_Wtime();

do_something_useful();

double t_end = MPI_Wtime();

printf ( “Something useful took %lf seconds!\n”, t_end – t_start );

• Hey, presto!
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Timing with many ranks

• Program stages with communication in them are subject to ranks waiting 
somewhat unpredictably long for each other
– Some may have been held up previously, and arrive late to the stage you’re timing

• In order to isolate that your timings are only affected by the operations in 
the section you want to time, synchronize the ranks first:

MPI_Barrier ( MPI_COMM_WORLD );

double t_start = MPI_Wtime();

do_something_useful();

double t_end = MPI_Wtime();

printf (
“Something useful took %ld seconds on rank %d!\n”, t_end – t_start, rank

);

• You get P different timings still, but you can collect them, find the 
average, variance, median, etc. etc. and figure out how long things take.
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Theoretical guesstimates

• Suppose we are posting letters in the mail instead of 
sending bytes across wires

• A tiny postcard will take some amount of time to get 
from here to Tipperary (or wherever)

• A large box will take a similar amount of time, even if 
you can put more stuff in it

• This interval is connected to the distance from A to B, 
rather than the message

• Let’s call it latency, and write α
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Postcards vs. boxes

• The difference between the postcard and the box is how much 
stuff gets moved

• Packing and unpacking the box takes additional time, and it’s 
additional labor for whoever is transporting it

• Network capacity is usually measured in some multiple of 
[bytes / second], we call it bandwidth and write β

• Equally interesting from a message passing perspective, is the 
inverse bandwidth β-1, measured in [seconds/byte]

• That is, how much transfer time do we add by sending 
additional bytes
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Approximate communication time

• When we know the size n of our message, we can estimate 
the transmission time as the sum of latency and n times the 
inverse bandwidth:

      Tcomm(n) = α + n β-1

• Because of the analogy with the mail system, this estimate 
is sometimes called the “postal model”

• I call it the Hockney model, because it was first published 
by one Roger W. Hockney

• Still others call it the pingpong model, for reasons that will 
imminently be made clear
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Hockney’s equipment

• Roger developed his model in order to estimate 
message costs on the Intel Paragon machine
– The computer museum here at NTNU still has one

– It doesn’t run any more

• Communication links were equally fast throughout the 
entire machine

• Therefore, the α and β-1 could be measured between 
any pair of processors, and characterize the whole 
contraption
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Hockney’s experiment

• The ping-pong test of communication speed goes as follows:
– Start the clock

– Repeat “a lot of” times:
• Send message from A to B (ping)
• Send message from B to A (pong)

– Stop the clock
– Divide the time difference by 2 (for both directions), and the number of 

messages

• The “lot of” times have to be adjusted to whatever makes the 
procedure last long enough that you can reliably time it
– That depends on the speed of the equipment you’re using
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Extracting α and β-1

• In order to find the latency, we can do the ping-pong test 
with a massive number of either empty or 1-byte 
messages
– This way, latency will dominate the time taken
– 1-byte messages are only necessary if your machine skips empty 

messages

• In order to find the inverse bandwidth, we can do the 
ping-pong test with a smaller number of huge messages
– This way, bandwidth requirements will dominate the time taken
– Your choice of “huge” should reflect how many layers of the memory 

hierarchy you want the procedure to account for
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In modern times

• The days of uniform latency and bandwidth are long gone
– The cost of sending messages between adjacent cores on a chip is wildly different from 

the cost of sending them to another computer across the room

• If you want to make sense of ping-pong results nowadays, you have 
to measure as many different α/β pairs as you have types of links in 
your platform

• It can still be useful, though, if you are careful about where your ranks 
are running

(There are also a couple of statistical techniques to make the 
measurements more stable and reliable, but I won’t bother you with 
them in TDT4200)
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Latency lags bandwidth

• Latency is often the smaller part of transmission time
• It is, however, very difficult to improve upon:

– Bandwidth can be expanded by adding extra lanes to the 
interconnect fabric

– Latency is ultimately restricted by the speed of light, nothing can go 
faster from A to B

• Research in parallel computing is eagerly investigating 
latency-masking techniques
– We can’t get rid of it, but we can do something useful in the meantime
– Overlapping computation with MPI_Isend is one such technique
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Back to the MPI stuff

• Out of the collective operations, we only looked at 
barrier, broadcast and reduction

• I won’t go through all of them (they’re in the 
documentation), but two more are in common use:

• MPI_Scatter takes a huge lump of data on one rank 
and distributes parts of it around

• MPI_Gather collects distributed parts into a huge 
lump of data on one rank
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MPI_Scatter

• This is another rooted collective, like Bcast and Reduce

• I’ve illustrated it with 0 as the root

• Note that the root also gets a rank-sized piece of the data, 
even though it already has a copy

Rank 0

Rank 1 Rank 2 Rank 3

42
64

128
79

64 128 79

42
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Scatter arguments

• They look pretty much the same as Sendrecv
int MPI_Scatter(

    const void *sendbuf, int sendcount, MPI_Datatype sendtype,

    void *recvbuf, int recvcount, MPI_Datatype recvtype,

    int root, MPI_Comm comm

);

• The send-{buf,count,type} are only relevant on the root rank
• Mind that the root’s send buffer must contain p times as 

many elements as the sendcount, for p participants
– e.g. if you’re scattering to 4 ranks, with a sendcount of 1, there has to be 4 

elements in the buffer
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MPI_Gather

• This is the same thing, just in the opposite direction

Rank 0

Rank 1 Rank 2 Rank 3

42
64

128
79

64 128 79

42
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Gather arguments

The list is the same as before:
int MPI_Gather(

    const void *sendbuf, int sendcount, MPI_Datatype sendtype,

    void *recvbuf, int recvcount, MPI_Datatype recvtype,

    int root, MPI_Comm comm

);

• This time it’s the recv-{buffer,count,type} that are only 
relevant to the root

• Mind the size of the receive-buffer
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Analyzing a collective operation

• There can be multiple ways to implement collective 
operations

• Suppose we use a linear approach to scatter N 
elements from rank 0 in a collective of p ranks
– Just let rank 0 send all the messages, one after the other

• There will be (p-1) latencies
• Each send requires (N/p)β-1 of the bandwidth, so
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Scatter using a binary tree
• Message sizes can halve with every step
• P0 sits on the critical path

P0

P4P0

P2 P6P0

P1 P3

P4

P5 P7P2 P4 P6P0

time

α+(N/2)β-1

α+(N/4)β-1

α+(N/8)β-1 α+(N/8)β-1

α+(N/4)β-1

α+(N/8)β-1 α+(N/8)β-1
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Conclusions from the comparison

• For scatter, we can save some latency by choosing 
communication patterns cleverly

• It doesn’t make any difference to the bandwidth 
requirement

• That stands to reason, because rank 0 has to push 
the same amount of data out the door either way
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In reality

• We glossed over the fact that not all links are equal
• Still, we figured out something about the two 

communication patterns, independent of platform 
details

• Dissecting communication patterns like this is a 
handy skill

• You can try it with reductions at home
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