

1

Derived data types

Jan.Christian.Meyer@ntnu.no

2

The primitive types

• All we’ve seen so far are messages containing some
number of contiguous elements, of types like
– MPI_INT64_T
– MPI_DOUBLE
– MPI_CHAR

...etc…

• It’s fine for sending rows of consecutive array elements,
but it quickly gets restrictive
– What if you want to send columns?
– What if you want to send the contents of a struct that has different types

of elements inside?

3

Solution #1: DIY packing

• You can always marshal a serialized version of your own objects
struct { int i; int j; double v; } my_struct; // Structured data

uint8_t my_buffer [2*sizeof(int)+sizeof(double)]; // Just some bytes

*((int *)&my_buffer[0]) = my_struct.i; // Count bytes

*((int *)&my_buffer[sizeof(int)]) = my_struct.j;

*((double *)&my_buffer[2*sizeof(int)]) = my_struct.v;

send/receive the contents of my_buffer, and manually un-
marshal the whole mess at the receiving end

• This requires a lot of extra code, and it’s kind of messy
• There are functions MPI_Pack and MPI_Unpack that dispense

with most of the pointer arithmetic
– They still create about as much additional work, though

4

Derived types

• Most of the problems that can be solved by packing can
also be handled more elegantly using derived types

• A derived type combines some other types (whether
predefined or derived) in a structure which describes their
layout in memory

• Derived types must be constructed and commited to MPI,
so that it can “compile” an efficient representation of them

• After that, you can use them just like the primitive types

5

Types, in general

{ (t0,d0), (t1,d1), … , (tn-1,dn-1) } ← this is an MPI_Datatype

• It consists of
– a type signature [t0, t1, …, tn-1] (i.e. a list of types), and
– a list of displacements [d0, d1, … , dn-1]

• The displacements are all memory offsets relative to an
arbitrary base address (called the lower bound)

• A type of one float and two chars may look like this

(lower bound)

(MPI_FLOAT,2)

(MPI_CHAR,6) (MPI_CHAR,8)

Note: there can be gaps
between displacements

6

Memory locations and integers

• MPI doesn’t demand much from its target platforms
– It allows for the possibility that a memory address may not fit in an integer
– Same as how we can have a 64-bit pointer to a 32-bit int

• Therefore, MPI has the MPI_Aint type, with the
requirement that it can hold a memory address

• Displacements have this type
• It’s mostly a general wrapper for points, so if you pass

pointers where Aints are expected, no function call is
likely to complain
– The abstraction is more helpful in Fortran
– Fortran’s intrinsic pointers are demented unusual

7

How big is a type?

• That depends on your point of view
• Our example type of 1 float and 2 chars can be said

to consist of
– 6 bytes (4 bytes of float data + 2 bytes of char data)

or

– 9 bytes (the distance from its origin to its end)

– The last char is at displacement 8, so if we want to put two of these
after one another, the 2nd begins at displacement 9 from the first

• This latter number is called the extent of the type
– It includes gaps and spacing

8

Why care?

• The point of the distinction is that when MPI works
out what “count elements” of an MPI_Datatype
means (as seen in send, recv, and almost everywhere else), it uses
the type’s extent to read them

• Consider a type { (float, 0), (float, 8) }
• Two of these will have a memory footprint like this:

Nr. 1 Nr. 2

This is consistent with the idea of counting contiguous
blocks of predefined types, Nr. 2 begins right after Nr.1

9

Tricks with the extent

• Since the elements of the example are separated by
4 bytes, an equally useful assumption might be that
we want “2 consecutive elements” to look like this
instead:

• This can be done by padding each element to include
4 floats and only use 2 of them, but it’s redundant

• Alternatively, we can set the extent of 1 element to be
16, instead of the default 12

Nr. 1 Nr. 2

10

Resizing types

• int MPI_Type_create_resized (
MPI_Datatype old_type, // Type to start with

MPI_Aint lower_bound, // New value for lower bound

MPI_Aint extent, // New value for extent

MIP_Datatype *new_type // Result comes out here

);
• With what we know already, we could at this point

– Take a primitive type like MPI_INT64_T
– Create a version of it that contains only every 8th consecutive int64_t in

memory
– Or something similar

11

Another use

• The extent is just the multiple to count “consecutive”
copies in, padding it has no effect on memory
contents

• If we adjust the extent to a shorter size than even the
footprint of the data type, we can interleave data with
it

• Here’s our example type again, in “2 consecutive
elements” with extent 4:

12

Consecutive blocks & lengths

• So far, a type of consecutive float triplets becomes
{ (float,0), (float,4), (float,8) }

• That’s a little redundant
• Since it’s a consecutive block, it would suffice to

count the number of consecutive elements
{ (float, 3 x sizeof(float)) }

• That’s the notion of a block length, which comes up
on the next few slides

13

Creating structured types

• In quite general terms, you can specify a type in all the
gory details we’ve talked about, based on counts and
block lengths of some other type(s):

int MPI_Type_struct (
int count, // How many parts do we have?

int * array_of_blocklengths, // What are their block lengths?

MPI_Aint *array_of_displacements, // What are their displacements?

MPI_Datatype *array_of_types, // What are their types?

MPI_Datatype *new_type // Output: a brand new type

);
• This gives explicit control of the whole type’s layout

14

Committing types

• To make the translation from MPI types into the native
addressing mechanism of your computer, we must
commit them before use

• int MPI_Commit_type (MPI_Datatype *t);
– This function does precisely that

• In practice,
MPI_Datatype my_type;

MPI_Type_struct (foo, bar, baz, &my_type);

MPI_Commit_type (&my_type);

MPI_Send (ptr, 2, my_type, dst, tag, MPI_COMM_WORLD);

(Footnote: if you make intermediate types as steps to construct a
really complicated one, it’s only necessary to commit the final product)

15

Vector types

• The generality of structured types means they can also
represent types which have a very regular layout

• Committing a structured type for lots of regularly spaced
elements is repetitive and tedious

• Consider this layout:

• This would be a list of 11 displacements, even if we know
they’re all evenly separated

• This is a very common task
• Enter: vector types, consisting of

– A count
– A block length
– A common stride between the blocks

16

Patterns in multidimensional arrays

• Consider this 6x5 array, with a column and a row vector:

• In row-major order, it has the memory footprint (i,j)=i*5+j

• In column-major order, it’s (i,j) = j*6+i

• If we do it in one way, the elements of columns are scattered
out across memory

• If we do it in the other, the elements of rows are scattered
instead

17

The common cause of stride

• Whether it’s this-major or that-major, indices along the minor
axis are “strided”:

• That is the stride parameter of the vector type
(count and blocklength mean what they meant before)

• It’s the distance between neighbors in a direction we’ve
chosen to project into sequential memory

• The scheme extends naturally to 3D, 4D, etc. by making
successively larger jumps between neighboring elements
along each new axis

+5 +5 +5 +5 +5

18

Using vector types

• Given, e.g. a 5x5 matrix of doubles,
MPI_Type_vector (5, 2, 5, MPI_DOUBLE, &my_type);

5 elements, blocklen 2, stride 5

19

It’s independent of position
• MPI_Send (&ARRAY(0,0), …, my_type, …);

sends these elements

• MPI_Send (&ARRAY(0,2), …, my_type, …);

sends these instead

With similar offsets,
you don’t need an own
type for every vector

20

Subarrays

• We can also construct types for internal regions of
arrays

int MPI_Type_create_subarray (
int ndims, // How many dimensions in array?

const int array_of_sizes[], // How big is the entire array?

const int array_of_subsizes[], // How big is our slice of it?

const int array_of_starts[] // Where is the origin of the slice?

int order, MPI_Datatype old_type, MPI_Datatype *new_type

);

21

A 2D example

• Using
ndims=2

array_of_sizes = (int[2]) { 6, 6 }

array_of_subsizes = (int[2]) { 4, 4 }

array_of_starts = (int[2]) { 1, 1 }

we get this slice of a 6x6 array:

• Nice for separating domain interiors from halos

22

There are a couple of more conveniences

• int MPI_Type_contiguous (
int count, MPI_Datatype oldtype, MPI_Datatype *newtype

);
– This is just a block of memory

• int MPI_Type_indexed (
int count, // Nr. of parts

int *block_lengths, // List of blocklengths for the parts

int *displacements, // List of their displacements

MPI_Datatype oldtype, // What kind of elements?

MPI_Datatype *newtype

);
– This is like MPI_Type_struct, except that all the struct members have the same type

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

