

1

Communicators

Jan.Christian.Meyer@ntnu.no

2

Today’s topic

• As we said in the very beginning of this MPI journey
(and used in every program thereafter)

the ranks that participate in MPI communication are all
members of an MPI_Comm (...unicator)

• These can be created and manipulated in a couple of
ways, we will examine two
– By choosing arbitary groups of ranks
– By arranging them in a general graph structure

• We’ll arrange them in rectangular grids next lecture

3

Choosing arbitrary sets of ranks

• An MPI_Group is just a set of ranks
• There is a set like this associated with every

communicator
• It doesn’t contain any contact information, but we can

use them to partition our collective into subsets
int MPI_Comm_group (MPI_Comm comm, MPI_Group *group);

fetches the group of ranks in the communicator

MPI_Group everyone;

MPI_Comm_group (MPI_COMM_WORLD, &everyone);

// This gets us a group that contains all the ranks

4

Including ranks in groups

• We can make them up from existing groups
• The ingredients are

– The group we have chosen as a basis
– An integer member count
– A list of that many integers representing ranks in a group we already have
– A pointer to the new (sub-)group we want to create

int MPI_Group_incl (
MPI_Group old_group,

int number_of_members,

const int rank_list[], ← ‘number_of_members’ long list

MPI_Group *new_group

);

5

Excluding ranks from groups

• This one wins no points for originality, I’m sure you can
guess what it does

int MPI_Group_excl (
MPI_Group old_group,

int number_of_rejects,

int ranks_to_remove[], ← ‘number_of_rejects’ long list

MPI_Group *new_group

);

// The new group contains all the ranks of the old one, except for

// the ones listed by arguments 2 and 3

6

Set operations: union

• When we have some groups that we want to join,
they can be merged together

int MPI_Group_union (
MPI_Group g1,

MPI_Group g2,

MPI_Group *new_group

);

• The new group will contain exactly one copy of each
distinct rank from g1, g2

7

Set operations: intersection

• If some groups contain some of the same ranks, we
can make one out of only the ranks that they share

MPI_Group_intersection (
MPI_Group g1,

MPI_Group g2,

MPI_Group *new_group

);

• The new group will contain only ranks that are
contained both within g1 and g2

8

Why this additional group concept?

• Sets of ranks are remarkably close to what we’ve
called communicators

• Since they don’t contain contact information, though,
ranks that aren’t members of a group can still put it
together
– They’re just bags of numbers, in a sense

• It’s all part of allowing for most of the code to be
collectively executed

9

Making an MPI_Comm

• When all your groups are collected and ready, they can be
made into communicators:

int MPI_Comm_create (
MPI_Comm old_communicator, ← Communicator to start with

MPI_Group group, ← Subset of ranks in it

MPI_Comm *new_communicator ← The new communicator

);

• When a rank that is a member of the group makes this call,
it gets a communicator handle back

• When a rank that is not a member of the group makes this
call, it gets MPI_COMM_NULL back

10

I have prepared an example...

• In the example code archive, the directory
“01_group_communicator” contains a program that
– Gets the group from the world comm
– Divides them into two subgroups: odd and even world-ranks
– Creates communicators out of both
– Has one rank report back on

• which half it became a member of, and
• what its rank is among that subset (not the same as its world-rank)

• World-rank 0 reports by default, unless another one is given as the
first command line argument

• The program doesn’t do anything useful, but it’s a demonstration of
one way in which we can partition the world comm.

11

Graph communicators

• All this juggling of groups and their members can be
circumvented if all you want is some typical
rearrangement of all the ranks in a communicator

• One typical (and very general) construction is to
arrange them as a directed graph

• Here’s a (hypothetical) 6-way example of that kind of
thing:

1
2 3

4 5

6

Rank 1 can send to 2 and 4
Ranks 2-5 can all collaborate
Ranks 3 and 5 pass the result to rank 6

12

That example is contrived

• True.
– We could imagine a pipeline where 1 feeds input into a fully

connected cluster and 6 receives the output, but we’d typically want
to let 1 talk to all of 2-5, and 6 to receive from all of them

– The drawing comes out clearer this way, though

• Since we can do arbitrary graphs, we can just make a
more elaborate example out of a familiar structure
– A binary tree is a particular case of a graph

– Let’s make a binary tree communicator

– Code in example subdirectory “02_general_graph”

13

The heart of the matter

• This call creates a graph communicator out of another
communicator, by just imposing the graph structure:

int MPI_Graph_create (
MPI_Comm old_communicator, ← Easy

int number_of_nodes, ← Easy

const int index[],

const int edges[],

int reorder, ← Easy

MPI_Comm *new_communicator ← Easy

);

• Most of this is straightforward
– “reorder” says whether or not MPI is allowed to give ranks in the new

communicator different numbers, or whether it must keep the old values

– 0 means don’t reorder

– Not 0 means it’s ok to reorder (but it’s not an obligation)

14

The remaining two arguments

• ‘index’ and ‘edges’ are just some linear lists of
integers

• Sizing and contents can be a bit finickety, though
• That’s why I’d like to illustrate them using one

particular graph topology (i.e. the binary tree)

15

Indices in trees

• In order to map ranks onto tree nodes, we’ll need
some schema for which rank goes where

• Let’s use one which behaves like the indexing in a
“heap” data structure
– Usually covered in Algorithms&Data structures, but we’ll repeat it

– Mind that this is not the same thing as the “heap memory” we’ve
been talking about

• This is not the only way to number tree nodes, but it’s
simple.

16

Top-to-bottom and left-to-right
• Two levels:

• Three levels:

• Three levels, incomplete:

1

2 3

1

2

4 5

3

6 7

1

2

4 5

3

17

Most nodes have at most 3 neighbors

• Node 1 has at most 2 (left/right children)
• All other nodes have at least 1 (parent)

– Optionally, they have a left child

– Also optionally, a right child

• Here are the node-indices of all three, for node n>1
...if we assume that integer division truncates decimals…

parent = n/2

left_child = n*2

right_child = n*2+1

18

Translating for MPI ranks

• Those formulas work when we number tree nodes from 1
• MPI ranks begin at 0
• Therefore, the calculation becomes

parent = (rank+1)/2 - 1

left_child = (rank+1)*2 - 1

right_child = (rank+1)*2

instead:
– Add one to rank in order to get treenode indices
– Subtract one afterwards in order to get back to rank numbers

19

The edges list

• The list of edges is just a sorted list of neighbor ranks
for each rank

• Graph communicators are directed graphs
– to make them undirected, we’ll just add edges in both directions

• For our incomplete 3-level tree, it works out like this:
[2, 3, 1, 4, 5, 1, 2, 2] 1

2

4 5

3(The color coding indicates
whose neighbors are listed
where)

20

The edges list is a mess

• It’s not regularly ordered, because nodes can have
different numbers of neighbors

• This is where the index list comes in
– We can imagine one like this:

– This would give us the start of each rank’s neighbor list

by its entry in the index list

[0] 2
[1] 3
[2] 1
[3] 4
[4] 5
[5] 1
[6] 2
[7] 2

[0] 0
[1] 2
[2] 5
[3] 6
[4] 7

index edges

21

That’s mildly redundant

• The first entry would always be 0
– So we can skip it

• Each entry of the actual index list contains the sum of
neighbors from all preceding ranks instead:

[0] 2
[1] 3
[2] 1
[3] 4
[4] 5
[5] 1
[6] 2
[7] 2

[0] 2
[1] 5
[2] 6
[3] 7

index edges

(This is a prefix sum operation on an array.
You can implement it in parallel using
 MPI_Scan, if you want.
The example code does it with a loop,
 because we’re honestly juggling enough
 indices already.)

22

Those were all the arguments

• Once we’ve configured the graph layout, actually
creating the communicator is just a single call

• The communicator embeds all the neighborhood-info
inside

• Once you’ve created it, you no longer need to juggle
all the indexing logic

• The example code demonstrates this by passing the
result to a function which recovers the structure from
the communicator.

23

Usage

• In order to visualize that we got it right, the example code
ends by having each rank print its neighbor information
into its own text file
– Using the notation “A -> B” to say that there’s an edge from A to B
– This notation is used by the ‘dot’ graph plotting program
– It’s part of a package called GraphicsMagick, which you can install at

home

• After the MPI program has created all the partial text files,
you can run ‘make graph.png’
– It concatenates all the text into a common ‘graph.dot’ file
– It then passes the input to ‘dot’, and obtains a picture

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

