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Back to the process image

text

data

heap

stack

Machine code representation of the 
program

Storage for data fields with fixed size

Space that can be allocated at the
program’s request when it runs

Space for local variables, allocated
automatically when functions are called

(low adr.)

(high adr.)

(these two grow and shrink during run time)
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The purpose of the stack

5

● The stack supports function calls:

fib (n) {
  if (n>1)
    return fib(n-1) + fib(n-2)
  else
    return 1
}

main() {
  print fib(2)
}

n=2

Stack
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Anatomy of function calls

fib (n) {
  if (n>1)
    return fib(n-1) + fib(n-2)
  else
    return 1
}

main() {
  print fib(2)
}

n = 2

n = 1

1

Stack
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Anatomy of function calls

fib (n) {
  if (n>1)
    return fib(n-1) + fib(n-2)
  else
    return 1
}

main() {
  print fib(2)
}

n = 2

fib(1) = 1

n = 0

1

Stack
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Anatomy of function calls

fib (n) {
  if (n>1)
    return fib(n-1) + fib(n-2)
  else
    return 1
}

main() {
  print fib(2)
}

n = 2

fib(1) = 1

fib(2) = 1

1 + 1 = 2

Stack
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Anatomy of function calls

fib (n) {
  if (n>1)
    return fib(n-1) + fib(n-2)
  else
    return 1
}

main() {
  print fib(2)
}

2

...and the number “2” appears on screen.
Stack
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The purpose of the heap

*buffer = 0
main() {
  buffer = allocate (7)
  buffer[0] = ‘H’
  buffer[1] = ‘e’
  buffer[2] = ‘l’
  buffer[3] = ‘l’
  buffer[4] = ‘o’
  buffer[5] = ‘!’
  buffer[6] = 0
  print ( buffer )
  deallocate( buffer )
}

buffer = 0

Data segmentHeap

● The heap supports explicit program allocations:
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Anatomy of an explicit allocation

*buffer = 0
main() {
  buffer = allocate (7)
  buffer[0] = ‘H’
  buffer[1] = ‘e’
  buffer[2] = ‘l’
  buffer[3] = ‘l’
  buffer[4] = ‘o’
  buffer[5] = ‘!’
  buffer[6] = 0
  print ( buffer )
  deallocate( buffer )
}

buffer = 8192

Data segmentHeap

0

0

0

0

0

0

0

(this number is an arbitrary address inside
 the range of the heap)
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Anatomy of an explicit allocation

*buffer = 0
main() {
  buffer = allocate (7)
  buffer[0] = ‘H’
  buffer[1] = ‘e’
  buffer[2] = ‘l’
  buffer[3] = ‘l’
  buffer[4] = ‘o’
  buffer[5] = ‘!’
  buffer[6] = 0
  print ( buffer )
  deallocate( buffer )
}

buffer = 8192

Data segmentHeap

72 (‘H’)

101 (‘e’)

108 (‘l’)

0

0

0

0
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Anatomy of an explicit allocation

*buffer = 0
main() {
  buffer = allocate (7)
  buffer[0] = ‘H’
  buffer[1] = ‘e’
  buffer[2] = ‘l’
  buffer[3] = ‘l’
  buffer[4] = ‘o’
  buffer[5] = ‘!’
  buffer[6] = 0
  print ( buffer )
  deallocate( buffer )
}

buffer = 8192

Data segmentHeap

72 (‘H’)

101 (‘e’)

108 (‘l’)

108 (‘l’)

111 (‘o’)

33 (‘!’)

0
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Anatomy of an explicit allocation

*buffer = 0
main() {
  buffer = allocate (7)
  buffer[0] = ‘H’
  buffer[1] = ‘e’
  buffer[2] = ‘l’
  buffer[3] = ‘l’
  buffer[4] = ‘o’
  buffer[5] = ‘!’
  buffer[6] = 0
  print ( buffer )
  deallocate( buffer )
}

buffer = 8192

Data segmentHeap

72 (‘H’)

101 (‘e’)

108 (‘l’)

108 (‘l’)

111 (‘o’)

33 (‘!’)

0

“Hello!” appears on screen
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Anatomy of an explicit allocation

*buffer = 0
main() {
  buffer = allocate (7)
  buffer[0] = ‘H’
  buffer[1] = ‘e’
  buffer[2] = ‘l’
  buffer[3] = ‘l’
  buffer[4] = ‘o’
  buffer[5] = ‘!’
  buffer[6] = 0
  print ( buffer )
  deallocate( buffer )
}

buffer = 8192

Data segmentHeap
Memory at 8192 can be re-used
for a different allocation later
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One process and its thread

• In a sequential program, we follow one path through the 
program text

• It’s enough to have 1 of everything we have examined so far:

18

text data heap stack

ctxt
IP SP

0 264-1

Virtual address range
It’s mine, all mine...
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One process and two threads

• In a threaded program, we follow several independent paths through the 
program text

• This requires each thread to track its position, and the state of its own stack
• Data and heap segments are shared between these contexts, so if one 

thread alters a variable stored on the heap, that variable changes value for 
the other thread also

text data heap stack1

ctxt0

IP SP

0

Shared virtual address range
It’s ours, all ours...

stack0

ctxt1

IP SP

264-1
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The concept of concurrency

• The central idea is that we can improve programs by 
relaxing the restriction that their statements must only 
ever be executed in 1 specific order

• This can be done in many ways, and at many different 
levels of abstraction
– “one step of the program” might mean one database transaction, one 

web page served, one image rendered, etc. etc.

• When our goal is to compute some number, individual 
machine operations make a natural unit step, so that we 
can rearrange the calculation in detail
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Software that enables concurrency

• Threads are a software construct
– They only augment the program with information about which steps 

depend on a fixed sequence, and which ones don’t

• The hardware and O/S get to decide whether or not to 
do anything with that information
– Among the many valid execution orders of a threaded program, there 

is still the option of running all parts one after the other, like a 
sequential program

• For (TDT4200) parallel computing, we would like to have a 
maximal number of operations executed simultaneously



  

18

The hardware that executes our program

• Mapping of threads to physical processing cores is trivial 
when you have the same number of threads and cores

• Oversubscription can occasionally be useful
– It can keep the cores occupied when some threads need to block because 

they’re waiting for resources
– It is absolutely instrumental to using GPUs effectively, which we can return 

to later on

• For applications where the threads are constantly 
calculating something, multiple threads per core only delay 
the computation by adding the overhead of scheduling 
switches between them
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Shared memory parallelism

• A set of thread contexts map onto a set of processing 
cores
– Often a 1-1 mapping, but not by necessity

• Each thread has its own private work space
– That is, the local variables in the stack space of its function call(s)

• All threads have a shared, global workspace
– The data and heap segments can be used for inter-thread 

communication and collaboration
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What could possibly
go wrong?
• Any shared work space can become an arena for 

conflicts
– These are often caused by disagreements over the management of 

shared resources

• Parallel computers don’t grow sentimental about such 
conflicts, but they can still have them
– What if two (or more) independent threads simultaneously try to 

assign a number to a shared memory location?

• We must decide on some kind of contract or policy to 
resolve these situations
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Theoretically speaking

• The PRAM model* is a minimialistic, abstract 
machine which proposes 4 candidate policies:
– Common Value admits the assignment and allows execution to 

proceed if (and only if) all attempts to make it are trying to assign 
the same value

– Arbitrary Value assigns the value from one of the attempts, and the 
program must assume that it can be any of them

– Priority requires each thread to have a ranking among its peers, 
and the highest ranked assignment wins

– Reduction assigns the result of applying some commutative 
operation to all the attempts (sum, product, logical AND, etc.)

* Introduction to the Theory of Complexity, D.P. Bovet & P. Crescenzi, Prentice Hall Europe, 1994
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Practically speaking

• The only policy I have ever seen realized in actual 
hardware is the Arbitrary Value policy

• The value is simply determined by handling the 
assignments in the order they arrive at the memory 
banks

• This makes the program
– Behave non-deterministically in the best case

– Crash and BurnTM in the worst (and by far most common) case
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The Read-Modify-Write cycle
(again)

• We talked about this in the context of the von Neumann 
computer, but I’m repeating it now

• A minimal statement in a programming language might look 
like this:

total_sum += my_value;

• After the compiler is finished with it, we get a short 
sequence of smaller operations, e.g.

load my_value into register B

load total_sum into register A

add register B to register A

store register A in total_sum

• Programs produce this pattern all the time



  

24

Off to the races

• Suppose we have two threads with different numbers (4,6) as 
their private versions of my_value

• We want their sum (10) in a shared location
• If we try to run their total_sum += my_value statements 

simultaneously
(or even just almost simultaneously)

the answer comes out wrong:

Time step total_sum my_value #1 Thread #1 my_value #2 Thread #2

1 0 4 B← 4 6

2 0 4 A← 0 6 B← 6

3 0 4 A← A+B = 4 6 A← 0

4 4 4 total_sum ← 4 6 A← A+B = 6

5 6 4 6 total_sum ← 6
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Race conditions

• This sort of thing is called a race condition
– So named because just as in a horse race, the result is determined 

by which participant finishes first

• It can occur when there is contention for any shared 
thing that requires exclusive access to end well

• When the contested object is the value of a datum in 
memory, we can also call them data races

• The code segment that must not overlap is called a 
critical section
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Instruments of protection

• Several mechanisms have been invented to ensure exclusive 
access in a critical section
– Atomic operations
– Load Linked & Store Conditional instructions
– Mutex (lock) and semaphore data structures
– Higher-level programming model constructs

• All of these need some hardware support for their underlying 
operations
– Well, almost…
– There is actually a short and unreadable 1965 treatment by Dijkstra*, which 

proves that you can implement mutual exclusion purely in software
– If you try that method, you will discover that it’s dreadfully slow in practice

* Solution of a problem in Concurrent Programming Control,
E. W. Dijkstra, Communications of the ACM, Vol. 8, No. 9, 1965
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Pthreads are quite minimalistic

• They really only have 5 (or 6) things they can do:
– Start
– Stop
– Set and release a memory lock
– Wait until some other thread wakes them up
– Wait for every other thread at a barrier (just like MPI can do with processes)

• It’s not super productive to write pthreads code explicitly, because 
it makes you push many keys on the keyboard in order to solve 
conceptually simple problems

• We cover them anyway, because OpenMP (our next topic) is 
mostly implemented in terms of pthread operations if you closely 
inspect how it works
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