

1

Pthreads introduction

Jan.Christian.Meyer@ntnu.no

2

Back to the process image

text

data

heap

stack

Machine code representation of the
program

Storage for data fields with fixed size

Space that can be allocated at the
program’s request when it runs

Space for local variables, allocated
automatically when functions are called

(low adr.)

(high adr.)

(these two grow and shrink during run time)

3

The purpose of the stack

5

● The stack supports function calls:

fib (n) {
 if (n>1)
 return fib(n-1) + fib(n-2)
 else
 return 1
}

main() {
 print fib(2)
}

n=2

Stack

4

Anatomy of function calls

fib (n) {
 if (n>1)
 return fib(n-1) + fib(n-2)
 else
 return 1
}

main() {
 print fib(2)
}

n = 2

n = 1

1

Stack

5

Anatomy of function calls

fib (n) {
 if (n>1)
 return fib(n-1) + fib(n-2)
 else
 return 1
}

main() {
 print fib(2)
}

n = 2

fib(1) = 1

n = 0

1

Stack

6

Anatomy of function calls

fib (n) {
 if (n>1)
 return fib(n-1) + fib(n-2)
 else
 return 1
}

main() {
 print fib(2)
}

n = 2

fib(1) = 1

fib(2) = 1

1 + 1 = 2

Stack

7

Anatomy of function calls

fib (n) {
 if (n>1)
 return fib(n-1) + fib(n-2)
 else
 return 1
}

main() {
 print fib(2)
}

2

...and the number “2” appears on screen.
Stack

8

The purpose of the heap

*buffer = 0
main() {
 buffer = allocate (7)
 buffer[0] = ‘H’
 buffer[1] = ‘e’
 buffer[2] = ‘l’
 buffer[3] = ‘l’
 buffer[4] = ‘o’
 buffer[5] = ‘!’
 buffer[6] = 0
 print (buffer)
 deallocate(buffer)
}

buffer = 0

Data segmentHeap

● The heap supports explicit program allocations:

9

Anatomy of an explicit allocation

*buffer = 0
main() {
 buffer = allocate (7)
 buffer[0] = ‘H’
 buffer[1] = ‘e’
 buffer[2] = ‘l’
 buffer[3] = ‘l’
 buffer[4] = ‘o’
 buffer[5] = ‘!’
 buffer[6] = 0
 print (buffer)
 deallocate(buffer)
}

buffer = 8192

Data segmentHeap

0

0

0

0

0

0

0

(this number is an arbitrary address inside
 the range of the heap)

10

Anatomy of an explicit allocation

*buffer = 0
main() {
 buffer = allocate (7)
 buffer[0] = ‘H’
 buffer[1] = ‘e’
 buffer[2] = ‘l’
 buffer[3] = ‘l’
 buffer[4] = ‘o’
 buffer[5] = ‘!’
 buffer[6] = 0
 print (buffer)
 deallocate(buffer)
}

buffer = 8192

Data segmentHeap

72 (‘H’)

101 (‘e’)

108 (‘l’)

0

0

0

0

11

Anatomy of an explicit allocation

*buffer = 0
main() {
 buffer = allocate (7)
 buffer[0] = ‘H’
 buffer[1] = ‘e’
 buffer[2] = ‘l’
 buffer[3] = ‘l’
 buffer[4] = ‘o’
 buffer[5] = ‘!’
 buffer[6] = 0
 print (buffer)
 deallocate(buffer)
}

buffer = 8192

Data segmentHeap

72 (‘H’)

101 (‘e’)

108 (‘l’)

108 (‘l’)

111 (‘o’)

33 (‘!’)

0

12

Anatomy of an explicit allocation

*buffer = 0
main() {
 buffer = allocate (7)
 buffer[0] = ‘H’
 buffer[1] = ‘e’
 buffer[2] = ‘l’
 buffer[3] = ‘l’
 buffer[4] = ‘o’
 buffer[5] = ‘!’
 buffer[6] = 0
 print (buffer)
 deallocate(buffer)
}

buffer = 8192

Data segmentHeap

72 (‘H’)

101 (‘e’)

108 (‘l’)

108 (‘l’)

111 (‘o’)

33 (‘!’)

0

“Hello!” appears on screen

13

Anatomy of an explicit allocation

*buffer = 0
main() {
 buffer = allocate (7)
 buffer[0] = ‘H’
 buffer[1] = ‘e’
 buffer[2] = ‘l’
 buffer[3] = ‘l’
 buffer[4] = ‘o’
 buffer[5] = ‘!’
 buffer[6] = 0
 print (buffer)
 deallocate(buffer)
}

buffer = 8192

Data segmentHeap
Memory at 8192 can be re-used
for a different allocation later

14

One process and its thread

• In a sequential program, we follow one path through the
program text

• It’s enough to have 1 of everything we have examined so far:

18

text data heap stack

ctxt
IP SP

0 264-1

Virtual address range
It’s mine, all mine...

15

One process and two threads

• In a threaded program, we follow several independent paths through the
program text

• This requires each thread to track its position, and the state of its own stack
• Data and heap segments are shared between these contexts, so if one

thread alters a variable stored on the heap, that variable changes value for
the other thread also

text data heap stack1

ctxt0

IP SP

0

Shared virtual address range
It’s ours, all ours...

stack0

ctxt1

IP SP

264-1

16

The concept of concurrency

• The central idea is that we can improve programs by
relaxing the restriction that their statements must only
ever be executed in 1 specific order

• This can be done in many ways, and at many different
levels of abstraction
– “one step of the program” might mean one database transaction, one

web page served, one image rendered, etc. etc.

• When our goal is to compute some number, individual
machine operations make a natural unit step, so that we
can rearrange the calculation in detail

17

Software that enables concurrency

• Threads are a software construct
– They only augment the program with information about which steps

depend on a fixed sequence, and which ones don’t

• The hardware and O/S get to decide whether or not to
do anything with that information
– Among the many valid execution orders of a threaded program, there

is still the option of running all parts one after the other, like a
sequential program

• For (TDT4200) parallel computing, we would like to have a
maximal number of operations executed simultaneously

18

The hardware that executes our program

• Mapping of threads to physical processing cores is trivial
when you have the same number of threads and cores

• Oversubscription can occasionally be useful
– It can keep the cores occupied when some threads need to block because

they’re waiting for resources
– It is absolutely instrumental to using GPUs effectively, which we can return

to later on

• For applications where the threads are constantly
calculating something, multiple threads per core only delay
the computation by adding the overhead of scheduling
switches between them

19

Shared memory parallelism

• A set of thread contexts map onto a set of processing
cores
– Often a 1-1 mapping, but not by necessity

• Each thread has its own private work space
– That is, the local variables in the stack space of its function call(s)

• All threads have a shared, global workspace
– The data and heap segments can be used for inter-thread

communication and collaboration

20

What could possibly
go wrong?
• Any shared work space can become an arena for

conflicts
– These are often caused by disagreements over the management of

shared resources

• Parallel computers don’t grow sentimental about such
conflicts, but they can still have them
– What if two (or more) independent threads simultaneously try to

assign a number to a shared memory location?

• We must decide on some kind of contract or policy to
resolve these situations

21

Theoretically speaking

• The PRAM model* is a minimialistic, abstract
machine which proposes 4 candidate policies:
– Common Value admits the assignment and allows execution to

proceed if (and only if) all attempts to make it are trying to assign
the same value

– Arbitrary Value assigns the value from one of the attempts, and the
program must assume that it can be any of them

– Priority requires each thread to have a ranking among its peers,
and the highest ranked assignment wins

– Reduction assigns the result of applying some commutative
operation to all the attempts (sum, product, logical AND, etc.)

* Introduction to the Theory of Complexity, D.P. Bovet & P. Crescenzi, Prentice Hall Europe, 1994

22

Practically speaking

• The only policy I have ever seen realized in actual
hardware is the Arbitrary Value policy

• The value is simply determined by handling the
assignments in the order they arrive at the memory
banks

• This makes the program
– Behave non-deterministically in the best case

– Crash and BurnTM in the worst (and by far most common) case

23

The Read-Modify-Write cycle
(again)

• We talked about this in the context of the von Neumann
computer, but I’m repeating it now

• A minimal statement in a programming language might look
like this:

total_sum += my_value;

• After the compiler is finished with it, we get a short
sequence of smaller operations, e.g.

load my_value into register B

load total_sum into register A

add register B to register A

store register A in total_sum

• Programs produce this pattern all the time

24

Off to the races

• Suppose we have two threads with different numbers (4,6) as
their private versions of my_value

• We want their sum (10) in a shared location
• If we try to run their total_sum += my_value statements

simultaneously
(or even just almost simultaneously)

the answer comes out wrong:

Time step total_sum my_value #1 Thread #1 my_value #2 Thread #2

1 0 4 B← 4 6

2 0 4 A← 0 6 B← 6

3 0 4 A← A+B = 4 6 A← 0

4 4 4 total_sum ← 4 6 A← A+B = 6

5 6 4 6 total_sum ← 6

25

Race conditions

• This sort of thing is called a race condition
– So named because just as in a horse race, the result is determined

by which participant finishes first

• It can occur when there is contention for any shared
thing that requires exclusive access to end well

• When the contested object is the value of a datum in
memory, we can also call them data races

• The code segment that must not overlap is called a
critical section

26

Instruments of protection

• Several mechanisms have been invented to ensure exclusive
access in a critical section
– Atomic operations
– Load Linked & Store Conditional instructions
– Mutex (lock) and semaphore data structures
– Higher-level programming model constructs

• All of these need some hardware support for their underlying
operations
– Well, almost…
– There is actually a short and unreadable 1965 treatment by Dijkstra*, which

proves that you can implement mutual exclusion purely in software
– If you try that method, you will discover that it’s dreadfully slow in practice

* Solution of a problem in Concurrent Programming Control,
E. W. Dijkstra, Communications of the ACM, Vol. 8, No. 9, 1965

27

Pthreads are quite minimalistic

• They really only have 5 (or 6) things they can do:
– Start
– Stop
– Set and release a memory lock
– Wait until some other thread wakes them up
– Wait for every other thread at a barrier (just like MPI can do with processes)

• It’s not super productive to write pthreads code explicitly, because
it makes you push many keys on the keyboard in order to solve
conceptually simple problems

• We cover them anyway, because OpenMP (our next topic) is
mostly implemented in terms of pthread operations if you closely
inspect how it works

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

