

1

Creating and removing pthreads

Jan.Christian.Meyer@ntnu.no

2

There’s an old joke...

• A programmer had a problem, and thought
“I know, I’ll solve it with threads!”

• has Now problems. two programmer the

• We have already seen similar issues using parallel processes

• They appear perhaps even more easily with threads, because
there are no explicit messages in the code that synchronize it

3

Enabling pthreads

• Unlike MPI, it is not necessary to install any additional
software in order to start using pthreads
– The P stands for “POSIX”
– “POSIX” stands for “Portable Operating System Interface” (...X?)
– If your O/S supports them, you already have everything needed
– If your O/S doesn’t support them, it must be a very exotic one

• Your compiler should come with a header file, so that
#include <pthread.h>

inserts prototypes for all the functions, and putting

-pthread

among the compiler flags handles correct linking

4

Creating a function to use

• As we have spoken about, threads are closely related
to function calls
– They have their own call stack, but share everything else

• Spawning a thread basically amounts to writing
“start this function call in the background, and return immediately”

...so we’re going to need a function to call.
• Thread-able functions have this type signature in C:

void * my_function (void *argument);

i.e. it accepts a void * argument, and returns a void * value

5

Into the void

• ‘void’ means different things in C, depending on
where it appears
– When it stands in for an argument list it means “exactly zero

arguments”, as in
int make_random_number (void); // No input needed

– When it stands in for a type, it means “no particular type”, as in
void just_do_something (int x); // No return value needed

• Pointers-to-void (void *) aren’t “pointers to nothing”
– They are pointers to something, but

– They don’t know what type of value they point at

6

Pointers with types

• Connecting a type to a pointer allows a C compiler to
check that you’re using it correctly
– If we define

void do_something_useful (int *x);

and call
double pi = 3.141593;

do_something_useful (&pi);

we get a warning that there is probably some mistake

7

Pointers with types

• Connecting a type to a pointer also defines how to
handle arithmetic and dereferencing

If we define
int16_t *ten_sixteen_bit_ints = malloc (10 * sizeof(int16_t));

then

ten_sixteen_bit_ints[7]
and

*(ten_sixteen_bit_ints+7)
both mean “addr. ‘ten_sixteen_bit_ints’ plus 7 times sizeof(int16_t)”

because the pointer is pointing at 16-bit ints

8

Pointers without types

• A (void *) is just a memory address that could point at
anything
– We can’t do anything directly with it, because it doesn’t say anything about

how to interpret the data it points at
– We can’t add and subtract with it, because it doesn’t say how big an

address change “+1” should correspond to
– We can turn any type of pointer into a (void *), just discard the type
– We can also turn a (void *) into any other type of pointer, just add the

desired type

• This basically removes all protections from C’s type system
– On the assumption that you know exactly what you’re doing when you

explicitly choose to disable them

9

Case in point:

– This program works because the bit pattern of that horrible floating point number
coincides with the string “Hello!”

– It “shouldn’t” work, because it reinterprets the address of a number as the address
of some text, and numbers aren’t text

– It won’t work (the same way) on a CPU with a different internal floating point
representation

– The C compiler just shuts up and generates code when we tell it to

10

Back to the threads

void * my_function (void *argument);

• This function takes an address to an un-checked thing as
its argument
– The body of this function will have to cast the argument into whatever type

of thing it expects to receive

• It also returns an address to some un-checked thing
– The caller of this function will have to cast the return value into whatever

type of thing it expects to get back

• Unexpected events will occur if you pass it the wrong type
of argument, or mis-interpret the answer
– The compiler will be oblivious to what the mistake is

11

This is a recurring theme

• The whole design of pthreads is permeated by this
idea of a “gentleman’s agreement” between calling
functions and called functions:
– Callers have to ensure that the arguments are correct, threads

have to trust that the caller will interpret the answer correctly

– Threads can’t actually prevent each other from entering a critical
section, you have to program them so that they all respect the state
of a locking mechanism everyone can see

– Threads can’t forcibly exclude each other from overwriting shared
values, you have to program them so that they don’t try to

12

Creating a thread
(finally!)

• When you have defined your
void * my_function (void *arg);

it can be launched in a thread like this:
thread_t my_thread;

pthread_create (&my_thread, NULL, &my_function, NULL);

Thread handle Thread attributes Pointer to function (void *) to the
argument

13

Waiting for a thread to finish

• When we need that thread to finish its work, we can
wait for it like this:

pthread_join (my_thread, NULL);

• Those were a lot of NULLs, we’ll get back to them
momentarily

• What we did so far was to make control flow split and
merge over time:

main()pthread_create pthread_join

my_function()

(time goes from left to right)

14

Arguments and return values
(two of those NULLs)

• We can now try it out with passing arguments and
obtaining return values
– Today’s example archive subdirectory ‘01_hello_world’ contains a

program ‘arguments_and_return.c’ which utilizes the in/out
arguments of pthread_{create/join} to pass some values

– It’s a little redundant to return the result-pointer when there is only
one value it could ever have, but we can imagine a function that
chooses between several places to put the answer

– It serves mostly as an illustration, anyway

15

The last of the NULLs

• The second argument to pthread_create is a pointer to a
struct that has the type phtread_attr_t

• Such structs can be created and deleted with
pthread_attr_init and pthread_attr_destroy

• It lets you control O/S-dependent info about the thread
– Maximal lifetime
– Size of its stack
– Scheduling priority
– etc.

• The defaults we get by not using this will suffice

16

Now you’ve seen it

• The arguments/return thing is important for programs
that aim to be modular
– Pthreads were originally introduced for concurrent programs
– e.g. programs that spawn lots of threads with separate tasks, and

mostly wait around for something to do

• Most parallel HPC programs have a different purpose
– We usually don’t want more threads than we have CPU cores
– All the threads tend to do the same thing
– They tend to do it to large amounts of shared data, making it

impractical/pointless to pass copies of every value in and out of
function calls

17

HPC-style pthreads

• As with MPI programs, most of our needs are
covered if we can
– Work on some huge, global problem

– Give each thread a unique index among the total number of threads

– Calculate its part of the global problem from those two numbers

• A very common trick is to use the (void *) argument
as an integer instead
– We can store the total number of threads in a global variable

– We don’t need the argument to represent a memory address, so we
can just use the fact that a memory address is an integer

18

This is terrible software design

• I know, right?
• The variables don’t have descriptive names

– The argument pointer isn’t a pointer, and it doesn’t point at any
arguments

• The whole program state is global
– That’s where the threads can access it directly
– Individual blocks of local work-shares would double the total memory

requirement, and require a lot of copying

• I didn’t invent this pattern, you will find that our book
uses it as well

19

Hello, threads

• In the same example directory, there is also a
program called ‘hello_pthreads.c’

• It works in pretty much the same way as our MPI
hello world program, except that
– The collective isn’t there from the start, the main function has to

launch every co-worker

– They don’t all last until the end of the program, threads disappear
when they are joined on completion

– Threads that don’t join before the program exits will just vanish
without a trace

20

We have been here before

• We now have the tools to parallelize the same kind of
tasks that we could handle with only

MPI_{ Init, Finalize, Comm_rank, Comm_size }

– Embarrassingly parallel problems don’t need the threads to
synchronize/communicate

– If a sub-problem is only a function of a worker’s index, it can be handled
with just pthread_{ create, join }

• Next lecture, we will look at synchronization and
communication, and solve a problem that requires it

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

