

1

Pthread operations, synchronization

Jan.Christian.Meyer@ntnu.no

2

Today’s topic

• Last time, we looked at starting and stopping
pthreads

• I have said that they can only really do 3 more things
– lock/unlock

– wait for a signal

– wait at a barrier

• This time, we’ll cover those operations

3

We need a computation

• These operations all have to do with synchronization
– All communication is implicit with threads, so we just have to

organize who gets to work where and when

• A simple example is just to require some shared value
– A global sum, for instance

• We can recycle the example problem we used with
reductions
– Estimate the value of Pi by adding up a lot of rectangle areas

4

Quick recap

• In case you forgot, here’s the problem again:

Area under the curve is pi/4 Approximate it with rectangles

5

Example code directory

• The example code archive contains a directory
‘02_pi_estimate’

• There are 8 different versions of the program inside,
numbered in the sequence we’ll go through them

• Some of them don’t actually work, that’s intentional
– We’ll go through why in this lecture

6

01_pi_seq

• This is our sequential baseline
• Its kernel fits on a slide:

#define STEPS (1e8)
#define H (1.0/STEPS)

int
main ()
{
 double pi = 0.0, x = 0.0;
 for (size_t i=0; i<STEPS; i++)
 {
 x += H;
 pi += H / (1.0 + x*x);
 }
 pi *= 4.0;
 printf ("Estimated %e, missed by %e\n", pi, fabs(pi-M_PI));
 exit (EXIT_SUCCESS);
}

7

Parallelizing it badly
(02_pi_nolock.c)

• Make pi global, everyone contributes to it,
• hand out rectangles round-robin (e.g. for 3 threads), and
• get Wrong AnswerTM because everyone tries

to update pi willy-nilly (a real-life race condition)

0 1 2 0 1

void *
integrate (void *in)
{
 int64_t tid = (int64_t)in;
 double x = tid*H;
 for (size_t i=0; i<STEPS; i+=n_threads)
 {
 x += n_threads*H;
 pi += H / (1.0 + x*x);
 }
 return NULL;
}

8

What are we doing?!?

• We’re writing to a shared value in every iteration of a tight loop
• Performance-wise, this is an unconditionally bad idea

(and not just because it gets a wrong answer)

• Much better would be to add up a thread-local sum and combine
them all at the end

HOWEVER
• That would only show the race condition once in a blue moon (try it at

home)

• It would still be there
– Beware, Wrong Programs can give Right Answers
– We’re justifying the need for mutual exclusion
– I promise to fix the program afterwards

9

Do-It-Yourself mutual exclusion
(03_pi_diy_lock.c)

• We can add a shared integer (‘flag’) which says whose turn it is to update
the shared value

• Each thread busy-waits for its turn (eagerly doing nothing useful)
• Pass the turn round-robin (0,1,2,0,1,2,0,1,2…)

• We have effectively serialized this program (and added contention for the
flag variable), but this scheme kind of works…

...and it would get better with more parallel work vs. a smaller critical section

 for (size_t i=0; i<STEPS; i+=n_threads)
 {
 x += n_threads*H;
 while (flag != tid);
 pi += H / (1.0 + x*x);
 flag = (flag + 1) % n_threads;
 }

10

...but it only kind of works

• The effect of the waiting loop (it’s called a “spin-lock”) depends
very strongly on a strict order of program statements

• Notice that the Makefile goes out of its way to build
03_pi_diy_lock without any optimization flags

• Compiler optimizations can take liberties with
instructions that don’t produce visible results

• Make 03_pi_diy_deadlock to see what might happen
with exactly the same source code + optimizations

(...or maybe you can guess it from the name)

11

Aside:

The compiler doesn’t know about threads

• We create and join them using function calls to a system
library
– The source code doesn’t explicitly say that these calls multiply the control

flows
– We could technically replace them with implementations that didn’t
– It’s an invisible side effect, like I/O functions have

• The volatile keyword is not a memory fence
– I only point this out because many people mistake it for one
– Declaring a variable as volatile means the compiler is forbidden from moving

read and write instructions that access it around in the code
– If two threads simultaneously access a volatile variable, we still get a race

condition

12

Proper spin-locking

• In plain C, we must account for the fact that memory
updates aren’t strictly ordered

• In order to do that efficiently, we must abandon C and
reach into computer architecture, to look for atomic
operations
– Special instructions that have been wired into the CPU and

interconnection fabric so that they are impossible to interrupt

• Let’s not do that here, it’s a whole separate lecture

13

Pthreads to the rescue!
(04_pi_mutex.c)

• Add a shared variable pthread_mutex_t lock;
• Initialize it with pthread_mutex_init (&lock, NULL);
• Destroy it with pthread_mutex_destroy (&lock);
• Now we can do this:

 for (size_t i=0; i<STEPS; i+=n_threads)
 {
 x += n_threads*H;
 pthread_mutex_lock (&lock);
 pi += H / (1.0 + x*x);
 pthread_mutex_unlock (&lock);
 }

Also better because mutex doesn’t spin while the lock is held.
Try 03_pi_diy_lock with n_threads>cores if you want,
But reduce STEPS and prepare to wait a while...

14

Finally, as promised
(05_pi_mutex_fast.c)

• Make local partial sums and add total at the end

• Doing most of the work on thread-local values actually
obtains a speedup

• We have also shown that the lock isn’t just for decoration

 for (size_t i=0; i<STEPS; i+=n_threads)
 {
 x += n_threads*H;
 pi_local += H / (1.0 + x*x);
 }
 pthread_mutex_lock (&lock);
 pi += pi_local;
 pthread_mutex_unlock (&lock);

15

Synchronized iterations

• Many, many scientific parallel applications work in data-parallel
steps separated by synchronization
– Like our advection solver
– In 1996, this pattern accounted for an estimated 90% of parallel computations

altogether*
– Such estimates are harder to make now that everyone has a parallel computer,

the numbers have surely changed since
– The point is that this is something lots and lots of parallel programs do

• Using our example problem, we can mimic this behavior by
running the computation many times over
– No thread must start the next pi-estimate before the previous one is complete
– Resetting pi to 0 happens at the synchronization point

* G. C. Fox: An application perspective on high-performance computing and communications, (1996)

16

Condition variables

• pthread_cond_t is a type of variable that attaches a simple
sleep/wake signaling mechanism to a mutex

Create and destroy with

pthread_cond_init (&var, NULL);

pthread_cond_destroy (&var);

• Its semantics are a little counterintuitive, but manageable
– Use of its wait and signal operations can be illustrated by this sequencing

diagram:

17

DIY barrier using signals
(06_pi_cond_signal.c)

• The 1st through (n_threads-1)th arriving thread will:
– Lock and add local partial sum
– Increment global count of waiting threads
– Sleep, waiting for condition variable
– …
– Wake and regain the lock
– Decrement global count of waiting threads
– Signal another sleeping thread
– Release lock

• The last arriving thread recognizes that the barrier is complete,
and skips the sleeping step

• The last departing thread skips the signaling step

18

In code

• This is a function because we need to do it twice:
– Once to make sure the global sum is complete
– Once to make sure nobody adds to the global sum before it is reset

• Hence, there are
– 3 locks (for ‘pi’, ‘arrive’ and ‘depart’)
– 2 conds (for ‘arrive’ and ‘depart’)
– 2 counters (also for ‘arrive’ and ‘depart’)

void
signal_barrier (pthread_mutex_t *lock, pthread_cond_t *cond, int64_t *count)
{
 pthread_mutex_lock (lock);
 (*count)++;
 if ((*count) < n_threads)
 while (pthread_cond_wait (cond, lock) != 0);
 (*count)--;
 if ((*count) > 0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (lock);
 return;
}

Last arrival
skips this

Last departure
skips this

19

DIY barrier with broadcast
(07_pi_cond_broadcast.c)

• pthread_cond_signal wakes one waiting thread
• pthread_cond_broadcast wakes all waiting threads in turn
• We can use this to simplify our synchronization:

– 1st through (n_threads-1)th arriving threads
• Lock
• Add local part to global sum
• Increment arrival count
• Sleep
• Wake, and unlock

– Last arriving thread
• Prints global sum
• Resets arrivals and global sum
• Wakes everyone else up
• Unlocks

20

In code

• Only 1 lock and cond pair is necessary
• We’ve delegated the “master only” work to the last arriving thread, thus removing the need

for a 2nd barrier
– That’s OK because the rest are sleeping at the time

 pthread_mutex_lock (&lock);
 pi += pi_local;
 arrived++;
 if (arrived < n_threads)
 while (pthread_cond_wait (&cond, &lock) != 0);
 else
 {
 arrived = 0;
 pi *= 4.0;
 printf ("Estimated %e, missed by %e (thread %ld)\n", pi, fabs(pi-M_PI), tid);
 pi = 0.0;
 pthread_cond_broadcast (&cond);
 }
 pthread_mutex_unlock (&lock);

21

Barrier using… a barrier
(08_pi_barrier.c)

• pthread_barrier_t is an object that behaves like our broadcast barrier,
initialize and destroy with

pthread_barrier_init (&var, NULL, count);
pthread_barrier_destroy (&var);

• pthread_barrier_wait (&var);
– Suspends threads until #count of them have called it,
– Resets var and resumes all threads

• This is an optional feature of pthreads, so the program contains
#define _GNU_SOURCE

before
#include <pthread.h>

in order to enable it.
• We can’t put the master computation into it, so it’s called twice for the same

reason as our home-made signal based barrier

22

Summary

• We have looked at
– Where pthreads come from
– Creating and joining threads
– Race conditions and the trouble with manual locking
– Mutex variables
– Condition variables
– Barriers

• We haven’t looked at semaphores
– Like barriers, semaphores are not a mandatory feature of pthreads implementations
– Chapter 4.7 in the book is a high-level overview, it’s more relevant to concurrent programs than

our parallel number-crunching applications
– You can read about semaphores, we won’t spend a lecture on them

• What remains is to say something about how cache memory acts when we
write in it

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

