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Today’s topic

• Last time, we looked at starting and stopping 
pthreads

• I have said that they can only really do 3 more things
– lock/unlock

– wait for a signal

– wait at a barrier

• This time, we’ll cover those operations
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We need a computation

• These operations all have to do with synchronization
– All communication is implicit with threads, so we just have to 

organize who gets to work where and when

• A simple example is just to require some shared value
– A global sum, for instance

• We can recycle the example problem we used with 
reductions
– Estimate the value of Pi by adding up a lot of rectangle areas
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Quick recap

• In case you forgot, here’s the problem again:

Area under the curve is pi/4 Approximate it with rectangles
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Example code directory

• The example code archive contains a directory 
‘02_pi_estimate’

• There are 8 different versions of the program inside, 
numbered in the sequence we’ll go through them

• Some of them don’t actually work, that’s intentional
– We’ll go through why in this lecture
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01_pi_seq

• This is our sequential baseline
• Its kernel fits on a slide:

#define STEPS (1e8)
#define H (1.0/STEPS)

int
main ( )
{
    double pi = 0.0, x = 0.0;
    for ( size_t i=0; i<STEPS; i++ )
    {
        x += H;
        pi += H / (1.0 + x*x);
    }
    pi *= 4.0;
    printf ( "Estimated %e, missed by %e\n", pi, fabs(pi-M_PI) );
    exit ( EXIT_SUCCESS );
}
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Parallelizing it badly
(02_pi_nolock.c)

• Make pi global, everyone contributes to it,
• hand out rectangles round-robin (e.g. for 3 threads), and
• get Wrong AnswerTM because everyone tries 

to update pi willy-nilly (a real-life race condition)

0 1 2 0 1

void *
integrate ( void *in )
{
    int64_t tid = (int64_t)in;
    double x = tid*H;
    for ( size_t i=0; i<STEPS; i+=n_threads )
    {
        x += n_threads*H;
        pi += H / (1.0 + x*x);
    }
    return NULL;
}
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What are we doing?!?

• We’re writing to a shared value in every iteration of a tight loop
• Performance-wise, this is an unconditionally bad idea

(and not just because it gets a wrong answer)

• Much better would be to add up a thread-local sum and combine 
them all at the end

HOWEVER
• That would only show the race condition once in a blue moon (try it at 

home)

• It would still be there
– Beware, Wrong Programs can give Right Answers
– We’re justifying the need for mutual exclusion
– I promise to fix the program afterwards
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Do-It-Yourself mutual exclusion
(03_pi_diy_lock.c)

• We can add a shared integer (‘flag’) which says whose turn it is to update 
the shared value

• Each thread busy-waits for its turn (eagerly doing nothing useful)
• Pass the turn round-robin (0,1,2,0,1,2,0,1,2…)

• We have effectively serialized this program (and added contention for the 
flag variable), but this scheme kind of works…

...and it would get better with more parallel work vs. a smaller critical section

    for ( size_t i=0; i<STEPS; i+=n_threads )
    {
        x += n_threads*H;
        while ( flag != tid );
        pi += H / (1.0 + x*x);
        flag = (flag + 1) % n_threads;
    }



  

10

...but it only kind of works

• The effect of the waiting loop (it’s called a “spin-lock”) depends 
very strongly on a strict order of program statements

• Notice that the Makefile goes out of its way to build 
03_pi_diy_lock without any optimization flags

• Compiler optimizations can take liberties with 
instructions that don’t produce visible results

• Make 03_pi_diy_deadlock to see what might happen 
with exactly the same source code + optimizations

(...or maybe you can guess it from the name)
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Aside:

The compiler doesn’t know about threads

• We create and join them using function calls to a system 
library
– The source code doesn’t explicitly say that these calls multiply the control 

flows
– We could technically replace them with implementations that didn’t
– It’s an invisible side effect, like I/O functions have

• The volatile keyword is not a memory fence
– I only point this out because many people mistake it for one
– Declaring a variable as volatile means the compiler is forbidden from moving 

read and write instructions that access it around in the code
– If two threads simultaneously access a volatile variable, we still get a race 

condition
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Proper spin-locking

• In plain C, we must account for the fact that memory 
updates aren’t strictly ordered

• In order to do that efficiently, we must abandon C and 
reach into computer architecture, to look for atomic 
operations
– Special instructions that have been wired into the CPU and 

interconnection fabric so that they are impossible to interrupt

• Let’s not do that here, it’s a whole separate lecture
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Pthreads to the rescue!
(04_pi_mutex.c)

• Add a shared variable pthread_mutex_t lock;
• Initialize it with pthread_mutex_init ( &lock, NULL );
• Destroy it with pthread_mutex_destroy ( &lock );
• Now we can do this:

 for ( size_t i=0; i<STEPS; i+=n_threads )
    {
        x += n_threads*H;
        pthread_mutex_lock ( &lock );
        pi += H / (1.0 + x*x);
        pthread_mutex_unlock ( &lock );
    }

Also better because mutex doesn’t spin while the lock is held.
Try 03_pi_diy_lock with n_threads>cores if you want,
But reduce STEPS and prepare to wait a while...
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Finally, as promised
(05_pi_mutex_fast.c)

• Make local partial sums and add total at the end

• Doing most of the work on thread-local values actually 
obtains a speedup

• We have also shown that the lock isn’t just for decoration

   for ( size_t i=0; i<STEPS; i+=n_threads )
    {
        x += n_threads*H;
        pi_local += H / (1.0 + x*x);
    }
    pthread_mutex_lock ( &lock );
    pi += pi_local;
    pthread_mutex_unlock ( &lock );
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Synchronized iterations

• Many, many scientific parallel applications work in data-parallel 
steps separated by synchronization
– Like our advection solver
– In 1996, this pattern accounted for an estimated 90% of parallel computations 

altogether*
– Such estimates are harder to make now that everyone has a parallel computer, 

the numbers have surely changed since
– The point is that this is something lots and lots of parallel programs do

• Using our example problem, we can mimic this behavior by 
running the computation many times over
– No thread must start the next pi-estimate before the previous one is complete
– Resetting pi to 0 happens at the synchronization point

* G. C. Fox: An application perspective on high-performance computing and communications, (1996)
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Condition variables

• pthread_cond_t is a type of variable that attaches a simple 
sleep/wake signaling mechanism to a mutex

Create and destroy with

pthread_cond_init ( &var, NULL );

pthread_cond_destroy ( &var );

• Its semantics are a little counterintuitive, but manageable
– Use of its wait and signal operations can be illustrated by this sequencing 

diagram:
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DIY barrier using signals
(06_pi_cond_signal.c)

• The 1st through (n_threads-1)th arriving thread will:
– Lock and add local partial sum
– Increment global count of waiting threads
– Sleep, waiting for condition variable
– …
– Wake and regain the lock
– Decrement global count of waiting threads
– Signal another sleeping thread
– Release lock

• The last arriving thread recognizes that the barrier is complete, 
and skips the sleeping step

• The last departing thread skips the signaling step
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In code

• This is a function because we need to do it twice:
– Once to make sure the global sum is complete
– Once to make sure nobody adds to the global sum before it is reset

• Hence, there are
– 3 locks (for ‘pi’, ‘arrive’ and ‘depart’)
– 2 conds (for ‘arrive’ and ‘depart’)
– 2 counters (also for ‘arrive’ and ‘depart’)

void
signal_barrier ( pthread_mutex_t *lock, pthread_cond_t *cond, int64_t *count )
{
    pthread_mutex_lock ( lock );
    (*count)++;
    if ( (*count) < n_threads )
        while ( pthread_cond_wait ( cond, lock ) != 0 );
    (*count)--;
    if ( (*count) > 0 )
        pthread_cond_signal ( cond );
    pthread_mutex_unlock ( lock );
    return;
}

Last arrival
skips this

Last departure
skips this
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DIY barrier with broadcast
(07_pi_cond_broadcast.c)

• pthread_cond_signal wakes one waiting thread
• pthread_cond_broadcast wakes all waiting threads in turn
• We can use this to simplify our synchronization:

– 1st through (n_threads-1)th arriving threads
• Lock
• Add local part to global sum
• Increment arrival count
• Sleep
• Wake, and unlock

– Last arriving thread
• Prints global sum
• Resets arrivals and global sum
• Wakes everyone else up
• Unlocks
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In code

• Only 1 lock and cond pair is necessary
• We’ve delegated the “master only” work to the last arriving thread, thus removing the need 

for a 2nd barrier
– That’s OK because the rest are sleeping at the time

      pthread_mutex_lock ( &lock );
        pi += pi_local;
        arrived++;
        if ( arrived < n_threads )
            while ( pthread_cond_wait ( &cond, &lock ) != 0 );
        else
        {
            arrived = 0;
            pi *= 4.0;
            printf ( "Estimated %e, missed by %e (thread %ld)\n", pi, fabs(pi-M_PI), tid );
            pi = 0.0;
            pthread_cond_broadcast ( &cond );
        }
        pthread_mutex_unlock ( &lock );
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Barrier using… a barrier
(08_pi_barrier.c)

• pthread_barrier_t is an object that behaves like our broadcast barrier, 
initialize and destroy with

pthread_barrier_init ( &var, NULL, count );
pthread_barrier_destroy ( &var );

• pthread_barrier_wait ( &var );
– Suspends threads until #count of them have called it,
– Resets var and resumes all threads

• This is an optional feature of pthreads, so the program contains
#define _GNU_SOURCE

before
#include <pthread.h>

in order to enable it.
• We can’t put the master computation into it, so it’s called twice for the same 

reason as our home-made signal based barrier
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Summary

• We have looked at
– Where pthreads come from
– Creating and joining threads
– Race conditions and the trouble with manual locking
– Mutex variables
– Condition variables
– Barriers

• We haven’t looked at semaphores
– Like barriers, semaphores are not a mandatory feature of pthreads implementations
– Chapter 4.7 in the book is a high-level overview, it’s more relevant to concurrent programs than 

our parallel number-crunching applications
– You can read about semaphores, we won’t spend a lecture on them

• What remains is to say something about how cache memory acts when we 
write in it
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