

1

Introduction to OpenMP

Jan.Christian.Meyer@ntnu.no

2

Open Multi-Processing

• OpenMP is almost as storied as MPI
– Version 1.0 was published in 1997

• It occupies a similar position as a de facto standard tool for
scientific number crunching

• It targets shared-memory systems
– MPI’s unit of parallelism is the process
– OpenMP’s unit of parallelism is the thread

• You can think of it as a more convenient way to handle
pthreads
– It’s not obliged to be implemented using pthreads, but it very often is
– It doesn’t only encompass threads, but that is by far its most common use

3

What’s in a name?

• Many moons ago, a major MPI implementation called LAM/MPI
merged with two less prominent ones

• A new name was required after the merger, so they settled on…

“OpenMPI”
– *sigh*
– I think they should have chosen a different name, but here we are

• OpenMPI is one out of many MPI implementations
• OpenMP is an entirely different programming model, with its own

specifications document
– Various implementations of this interface emerge and disappear...
– So it goes.

4

Parts of the puzzle

• As we’ve seen
– MPI is a separate 3rd party library of functions that you install in

addition to your compiler

– Pthreads are provided by the operating system, the function
declarations come with the compiler

• OpenMP is a little bit of both
– Its core is a set of language extensions that must be supported by

the compiler

– It also has a runtime library of functions that you can call to inspect
the state of what the compiler has generated

5

Language extensions?

• Yes; C has a standardized way to do nonstandard things, so to
speak

• The #pragma directive can be followed by some text that the
compiler will discover during its initial scan of the program code
– If it understands the text, it can insert appropriate code to replace the directive

with
– If it doesn’t understand the text, the compiler is free to discard it

• This way, compilers can support optional features in the code
that
– Work when you use a compiler that supports them
– Don’t break the program even if you use a compiler that doesn’t support them

6

A hypothetical example

• #pragma can ask for literally anything:

• You can compile this code without issue (try it at home)

– My compiler only makes the usual hello-world binary without any special effects

– It still reads the command
– It just doesn’t know what to do with it, and throws it away

• Given a compiler that supported it, this directive could
produce a musical executable

#include <stdio.h>
int main() {
 printf (“Hello, world!\n”);
 #pragma play me a song
 return 0;
}

7

A more practical use

• Pthreads code is tediously repetitive
• We have to do the same things over and over:

– Declare, initialize, use, and destroy a mutex for every thing that needs protection
– Declare, initialize, use, and destroy a cond for every signal
– Declare, initialize, use, and destroy an object for every barrier
– Simple sets of operations make for lots of repetitive typing

• Since the code is practically the same over and over, we might
as well make the compiler generate it

• It can figure out what to generate from a tiny language
embedded in well-placed #pragma directives

• That’s OpenMPs mechanism of choice

8

int main ()
{
 int a = 42, b = 32, c = 0;
 {
 int a = 64;
 c = a – b;
 }
 printf (“a = %d, b = %d, c = %d\n”, a, b, c);
 return 0;
}

Stack contexts

• We’ve covered how a function call encapsulates a
local set of values on the call stack
– That’s the connection between function calls and pthread creation

• Other local scopes also contain stack contexts
• Consider this program fragment:

The output is “a = 42, b = 32, c = 32”

9

int main ()
{
 int a = 42, b = 32, c = 0;
 {
 int a = 64;
 c = a – b;
 }
 printf (“a = %d, b = %d, c = %d\n”, a, b, c);
 return 0;
}

What’s going on?

• An open { /* basic block */ } establishes a local stack
context
– Just like a function call, except that it doesn’t have arguments and return

value

• A basic block can appear wherever a statement can
– That’s how we make if-branches and loop bodies

(and function bodies, for that matter)

Basic block acting
as a statement

10

int main ()
{
 int a = 42, b = 32, c = 0;
 {
 int a = 64;
 c = a – b;
 }
 printf (“a = %d, b = %d, c = %d\n”, a, b, c);
 return 0;
}

Block local scope

• Even when they don’t have names and arguments,
basic blocks let you declare variables that live only
inside the block

• That is a stack context at work:

Execution
is here

Stack state

a=42

b=32

c=0

11

int main ()
{
 int a = 42, b = 32, c = 0;
 {
 int a = 64;
 c = a – b;
 }
 printf (“a = %d, b = %d, c = %d\n”, a, b, c);
 return 0;
}

Block local scope

• After a few more steps, another stack context has been
started

• We now have two variables called ‘a’
– The most recent one is near the top of the stack in the scope of the

most recently opened block

– The other one sits in the stack space of the enclosing block

Execution
is here

Stack state

a=42

b=32

c=0

a=64

12

int main ()
{
 int a = 42, b = 32, c = 0;
 {
 int a = 64;
 c = a – b;
 }
 printf (“a = %d, b = %d, c = %d\n”, a, b, c);
 return 0;
}

Block local scope

• When the time comes to evaluate this expression
– The nearest declaration of a is used

– The current block’s context doesn’t contain b and c, so they are
tracked down in the enclosing scope

– (If they hadn’t been there, the next thing would be to check if they
were declared globally)

Execution
is here

Stack state

a=42

b=32

c=32

a=64

13

int main ()
{
 int a = 42, b = 32, c = 0;
 {
 int a = 64;
 c = a – b;
 }
 printf (“a = %d, b = %d, c = %d\n”, a, b, c);
 return 0;
}

Block local scope

• When the block ends, its local context is deleted from
the stack
– the “old” value of a becomes the topmost one in our stack context

again

– Hence, c is 32 even though a-b is 10 now

– We temporarily created a stack context with a different local variable in

Execution
is here

Stack state

a=42

b=32

c=32

14

Stack contexts can be threads

• We might as well leave it to the compiler to write the
thread spawning and joining logic

• There’s a program called ‘hello_openmp’ in today’s
example archive

• Notice that the Makefile has added the flag
-fopenmp

to the C compiler’s command line
– This enables OpenMP using gcc and clang
– Using icc, the flag is -qopenmp
– Using MSVC I don’t know what it is, but it’s something (read the manual)

15

We have the magic ingredients again

• Armed with a thread count and a thread id#, we can
solve all the embarrasingly parallel problems again
– Pick a task based on the id#

– Handle it

• OpenMP has a far richer set of concepts and tools
than this
– So far, it’s definitely the least amount of typing to make a hello

world example parallel, though

16

How many threads do we get?

• By default, OpenMP assumes that you want one thread
per core that your O/S recognizes

• You can adjust it without recompiling the program
– if you set the environment variable

OMP_NUM_THREADS

in your shell, OpenMP will look it up there

• You can also hard-code it into the program
#pragma omp parallel num_threads(4)

will always spawn 4 threads, overriding both your system information and
the environment variable

– There’s rarely a good reason to do this, though

17

We can do locking
(just like pthreads)

• The example program ‘pi_mutex_openmp.c’ is
(functionally) identical to last lecture’s ‘pi_mutex_fast’
example
– Computes local estimates per thread

– Uses a mutex data structure to avoid race conditions for a global value

• There are smoother ways to do this in OpenMP
– Don’t take it as a wonderful implementation strategy

– I just wanted to demonstrate that OpenMP code can act precisely like
pthread code

18

We can do barriers
(just like pthreads)

• The example program ‘pi_barrier_openmp.c’ is
(functionally) identical to last lecture’s ‘pi_barrier’
example
– Repeats computation 10 times

– Synchronizes between repetitions, to avoid race conditions when
resetting the global value

• There are smoother ways to do this in OpenMP as well
– Don’t take it as a wonderful implementation strategy

– I just wanted to demonstrate… oh, you get the point

19

We can’t do pthread_cond_t

• Inter-thread signals aren’t a thing in OpenMP

• OpenMP threads aren’t supposed to be sleeping, they’re
supposed to be computing something
– The constructs contain lots of busy-waiting, critical sections are expected to be

as short as possible
– Oversubscribe thread counts at your own peril

• If you want to yield CPU cores, just shut down the threads
instead
– They’re very easy to bring back again

(There is actually a different technique as well, but we’ll get back to it later)

20

How safe is this stuff?

• It is a little easier to write correct OpenMP code than
it is to write correct pthreads code
– That’s mostly because it requires you to consider fewer details at a

time, though

• The “gentleman’s agreement” philosophy still applies
– OpenMP makes threads when you tell it to

– If you treat a shared variable as if it were private, OpenMP will take
you at your word

– If you say that something should be parallelized when it should not,
you will get programs that compute wrong answers

21

Our reason to do this

• Today’s examples are really written in a pretty clunky style
– It is actually quite rare to need the thread id# and count for anything

in OpenMP

– I just wanted to show you that they are there, so as to demonstrate
that the correspondence to pthreads lurks just below the surface

• That’s kind of why we covered pthread programming
in the first place
– Like assembly code, it’s not very common to need explicit pthread

code

– Like assembly code, it’s good to know what’s going on even if you
don’t type it out by hand

22

Going forward

• Next time, we’ll start on the rich library of OpenMP
abstractions

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

