NTNU - Trondheim
Norwegian University of

Science and Technology

Atomicity in OpenMP

LY
www.ntnu.edu > Jan.Christian.Meyer@ntnu.no

A}

Atomic operations

* We've pointed out several times that a relaxed order
of memory operations causes problems
— In simultaneous attempts to write the same location
— In our home-made attempt at protecting a critical region

* Efficient implementation of a mutex requires some
architectural support
— In the form of atomic operations
— From Greek “atomos”, meaning “indivisible”
— Some instructions are hardwired to complete without interruption

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

A brief history of shared memory

* In days of yore, there was
— only 1 processing core on a chip

— comparable clock rates for cpu and memory bus
— no cache memory

* In parallel computing, this gave us dancehall

architectures:
C1 C2 C3 Memory banks

| | |
ci2 M1 M2 M3 ca

CPUs . =
- "B m4 M5 M6 [C5

cCi10 M7 M8 M9 C6 @ g

‘ ‘ ‘ Science and Technology

COgC8mCY/

Properties of the dancehall architectures

* All memory is shared by every CPU

* Any CPU can read/write to any memory bank at the

same speed
— Uniform Memory Access (UMA)
...and hence,

* Any CPU can contact any other at the same cost
— Just like any partner can invite any other to dance in a dancehall

* Another name is Symmetric MultiProcessor (SMP?*)
— “Symmetric” because everything costs the same everywhere

NTNU - Trondheim
Norwegian University of

Science and Technology

* NB: this abbreviation means something else now

A"
www.ntnu.edu ¥

This came with race conditions

* To solve it, the interconnect fabric+cpu design supported

atomic operations such as

Test-and-set
* Checkifavalueis O, setitto 1 ifitisn’t, return result to the CPU
* Great for spin-locking
Fetch-and-increment
* Increase the number in memory, return what it was before to the CPU
* Great for obtaining ticket numbers in a queue, for instance

Fetch-and-add
* Fetch-and-increment with arbitrary sized increment

Compare-and-swap

* Check if a value is equal to an expected value, exchange it for a number from
the CPU if it is, and return whether or not it succeeded
NTNU = Trondheim
B Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Fetch-and-phi operations

* Together, these are called fetch-and-phi ops

* If they otherwise cost the same, some of these
operations are more powerful than others

— Compare-and-swap admits more general synchronization
algorithms than test-and-set in the same # of ops

* For almost two decades, it was held that support for
better fetch-and-phi operations meant you had a
better supercomputer

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Dawn of the 215 century

As the memory wall emerged, access to closer memory banks grew
faster than access to remote memory banks
— Non-Uniform Memory Access (NUMA)

* Caches try to bridge the performance gap, but they only work for 1
processor and make it worse for the rest
— cache-coherent NUMA (ccNUMA)

* SMP went from meaning “Symmetric MultiProcessor” to “Shared
Memory Processor”
— Because they’re similar, but memory access isn’t symmetric anymore

* Multi-core laptops are technically small SMPs
— The name is no longer highly fashionable
— You can still come across it, though

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Alternate atomic solutions #1

Lock access to the cache line targeted by an
Instruction

— The interconnect fabric knows which CPUs have a copy of the cache
line

— If there’s more than 1, invalidate all other copies, and lock access to
the memory bank with the value in it as well

* This is what we get with Intel family & its compatible

competitors
— They carry legacy from CISC design philosophy

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Alternate atomic solutions #2

Load Linked/Store Conditional

LL is an instruction that fetches a value into a register, and temporarily tags the
memory bank it came from

While the value is in registers, it can be manipulated using the CPUs entire
Instruction set

The matching SC instruction tries to write the result back to the tagged memory
bank, and returns whether or not it succeeded

If it fails, the value isn’t stored, because someone else altered it in the
meantime

The program gets to know about the failure, and can decide what to do

* This comes from the MIPS line of processor designs

Explicit Load/Store instructions is more of a RISC way to handle things

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Alternate atomic solutions #3

Atomic Reservoir Memory

— Separate memory banks are wired directly to the processor, and
bypass all caching mechanisms

— Slower, but all read/write operations are atomic

— O/S supports separate malloc/free functions that only get blocks of
memory from this subsystem

e This comes from the Stanford DASH line of SMP
systems

— Not fashionable in 2023, but you never know when an old idea will
put in a new appearance again

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Read/modify/write instructions in x86_64

* If you know x86 64 assembly, you'll be familiar with

the fact that it has a CISC style instruction set

— Large set of complicated operations with many addressing modes
— Many of these instructions require multiple CPU cycles to complete

* Some operations include an entire read/modify/write

cycle in one single instruction, such as
— incq (%orax) — increment value at addr. in register rax
— addg $14,(%rax) ~ add 14 to value at addr. In register rax
— xchgq %rbx,(%rax) — swap value at addr. (%rax) with reg. Rbx

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Atomic ops In x86 64

* Such instructions can be made atomic by prefixing them with
‘lock’ in the assembly code
lock incq (%orax) — Atomically increment nr. at (%rax)
lock addq $14,(%rax) ~ Atomically add 14 to nr. at (%rax)
lock xchg %rbx,(%rax) ~ Atomically swap %rbx for (%rax)

 This makes them run a bit slower

* The effect of “lock” is to grant exclusive access to either

— the cache line with the memory value in it (if no other core has a copy), or
— the entire memory bus, if necessary

for the duration of the instruction
(Solution #1 of the variants we mentioned)

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Atomic ops In GCC

GCC has a set of built-in functions that aren’t directly part of C

(or any other) language, with names like
__atomic_test_and_set
__atomic_fetch_add
__atomic_compare_exchange
...and so on

* These mirror the fetch-and-phi ops of olden times

* They're actually there because they are used to implement the
atomics defined in C++ since 2011

* You can call them yourself, if you like
— They’re probably supported by clang too, but | haven't looked

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

The nasty part of all this

* Atthe CPU architecture / assembly instruction level,

atomics differ from design to design

— ...and not everyone likes to mix assembly with their high-level source
code

* Atthe O/S compiler level, atomics aren’t standardized

— The builtin functions of GCC are just a design decision that the GCC
people invented

— It's popular to be GCC-compatible, but it's not mandatory
* This is not good for writing portable code

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Atomic ops in OpenMP

* In the name of portability, OpenMP assumes that your architecture
has some range of atomic instructions that can be used on these

statements:
X++ ++X X-- --X
X +=(expr) X=X+ (expr) x = (expr) + X
X -= (expr) X =X - (expr) x=(expr) - X
X *= (expr) X =X*(expr) x=(expr)*x
X I= (expr) x=x/(expr) x=(expr)/x
X &= (expr) x=x& (expr) x = (expr) & x
X N=(expr) x=x"(expr) x=(expr)”™x
X |= (expr) X =X| (expr) x=(expr)|x
X <<= (expr) X=X << (expr) X = (expr) << x
X >>= (expr) X =Xx>>(expr) X = (expr) >> x

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

The atomic directive

* If you want to make an expression like that atomic,
just prefix it like so:
#pragma omp atomic
X +=my_local value

* We can apply this to our pi example from last time

* Implementation in today’s example code archive,
pi_atomic_openmp.c

— Note that the lock is gone, along with its initialization and
destruction

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Bigger critical sections

* The statements that can be made atomic are all quite short and
sweet
— Their protection mechanism is expected to be a single instruction

* If we have a longer bit of code to protect, we already know how
to do it with a lock

* We can make OpenMP generate the lock too
#pragma omp critical

{

/* Only one thread will come in here at a time */

}
* Almost redundant example code: pi_critical openmp.c

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

L ast of the mutual exclusion

* As we’ve noted, OpenMP threads can be spawned and joined
many times throughout a program

* Execution typically runs in bursts of parallelism:

>
Parallel work Parallel work
* One of these threads spawns the others, and lives on
afterwards
* In OpenMP terminology
— The collective is called a team NTNU Trondheim
— The spawning/joining thread is called the team’s master B et

A"
www.ntnu.edu ¥

The master directive

* Inside a parallel region, you can label a block like this
#pragma omp parallel

{
[* Lots of threads run here */
#pragma omp master
{
[* Only the master thread will come in here */
}
}

NTNU - Trondheim
Norwegian University of
Science and Technology

%
www.ntnu.edu ¥

A final pi example

* The same program is implemented again in pi_master_openmp.c,
using the obvious mechanism

e The structure is a little different

omp_get_max_threads() obtains the thread count outside of a parallel region, and
sizes up an array with an entry per thread

All the worker-threads put their partial pi estimates in that array
There’s a barrier to make sure that everyone’s work is finished
The master section adds up the final global sum

* The example is a little contrived

For this problem, it would be easier to shut down the threads and do the sum
afterwards

Still, you can see the principle at work

NTNU - Trondheim
Norwegian University of

Science and Technology

Footnote: This version is also quite slow, we will get back to the reason later

LY
www.ntnu.edu ¥

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

