

1

Atomicity in OpenMP

Jan.Christian.Meyer@ntnu.no

2

Atomic operations

• We’ve pointed out several times that a relaxed order
of memory operations causes problems
– In simultaneous attempts to write the same location
– In our home-made attempt at protecting a critical region

• Efficient implementation of a mutex requires some
architectural support
– In the form of atomic operations
– From Greek “atomos”, meaning “indivisible”
– Some instructions are hardwired to complete without interruption

3

A brief history of shared memory

• In days of yore, there was
– only 1 processing core on a chip
– comparable clock rates for cpu and memory bus
– no cache memory

• In parallel computing, this gave us dancehall
architectures:

M1 M2 M3

M4 M5 M6

M7 M8 M9

C4

C5

C6

C7C8C9

C12

C11

C10

C3C2C1

CPUs

Memory banks

4

Properties of the dancehall architectures

• All memory is shared by every CPU
• Any CPU can read/write to any memory bank at the

same speed
– Uniform Memory Access (UMA)

...and hence,

• Any CPU can contact any other at the same cost
– just like any partner can invite any other to dance in a dancehall

• Another name is Symmetric MultiProcessor (SMP*)
– “Symmetric” because everything costs the same everywhere

* NB: this abbreviation means something else now

5

This came with race conditions

• To solve it, the interconnect fabric+cpu design supported
atomic operations such as

Test-and-set
• Check if a value is 0, set it to 1 if it isn’t, return result to the CPU
• Great for spin-locking

Fetch-and-increment
• Increase the number in memory, return what it was before to the CPU
• Great for obtaining ticket numbers in a queue, for instance

Fetch-and-add
• Fetch-and-increment with arbitrary sized increment

Compare-and-swap
• Check if a value is equal to an expected value, exchange it for a number from

the CPU if it is, and return whether or not it succeeded

6

Fetch-and-phi operations

• Together, these are called fetch-and-phi ops
• If they otherwise cost the same, some of these

operations are more powerful than others
– Compare-and-swap admits more general synchronization

algorithms than test-and-set in the same # of ops

• For almost two decades, it was held that support for
better fetch-and-phi operations meant you had a
better supercomputer

7

Dawn of the 21st century
• As the memory wall emerged, access to closer memory banks grew

faster than access to remote memory banks
– Non-Uniform Memory Access (NUMA)

• Caches try to bridge the performance gap, but they only work for 1
processor and make it worse for the rest
– cache-coherent NUMA (ccNUMA)

• SMP went from meaning “Symmetric MultiProcessor” to “Shared
Memory Processor”
– Because they’re similar, but memory access isn’t symmetric anymore

• Multi-core laptops are technically small SMPs
– The name is no longer highly fashionable
– You can still come across it, though

8

Alternate atomic solutions #1

Lock access to the cache line targeted by an
instruction
– The interconnect fabric knows which CPUs have a copy of the cache

line
– If there’s more than 1, invalidate all other copies, and lock access to

the memory bank with the value in it as well

• This is what we get with Intel family & its compatible
competitors
– They carry legacy from CISC design philosophy

9

Alternate atomic solutions #2

Load Linked/Store Conditional
– LL is an instruction that fetches a value into a register, and temporarily tags the

memory bank it came from
– While the value is in registers, it can be manipulated using the CPUs entire

instruction set
– The matching SC instruction tries to write the result back to the tagged memory

bank, and returns whether or not it succeeded
– If it fails, the value isn’t stored, because someone else altered it in the

meantime
– The program gets to know about the failure, and can decide what to do

• This comes from the MIPS line of processor designs
– Explicit Load/Store instructions is more of a RISC way to handle things

10

Alternate atomic solutions #3

Atomic Reservoir Memory
– Separate memory banks are wired directly to the processor, and

bypass all caching mechanisms
– Slower, but all read/write operations are atomic
– O/S supports separate malloc/free functions that only get blocks of

memory from this subsystem

• This comes from the Stanford DASH line of SMP
systems
– Not fashionable in 2023, but you never know when an old idea will

put in a new appearance again

11

Read/modify/write instructions in x86_64

• If you know x86_64 assembly, you’ll be familiar with
the fact that it has a CISC style instruction set
– Large set of complicated operations with many addressing modes
– Many of these instructions require multiple CPU cycles to complete

• Some operations include an entire read/modify/write
cycle in one single instruction, such as
– incq (%rax) ← increment value at addr. in register rax
– addq $14,(%rax) ← add 14 to value at addr. In register rax
– xchgq %rbx,(%rax) ← swap value at addr. (%rax) with reg. Rbx

12

Atomic ops in x86_64
• Such instructions can be made atomic by prefixing them with

‘lock’ in the assembly code
lock incq (%rax) ← Atomically increment nr. at (%rax)
lock addq $14,(%rax) ← Atomically add 14 to nr. at (%rax)
lock xchg %rbx,(%rax) ← Atomically swap %rbx for (%rax)

• This makes them run a bit slower
• The effect of “lock” is to grant exclusive access to either

– the cache line with the memory value in it (if no other core has a copy), or
– the entire memory bus, if necessary

for the duration of the instruction
(Solution #1 of the variants we mentioned)

13

Atomic ops in GCC
• GCC has a set of built-in functions that aren’t directly part of C

(or any other) language, with names like
__atomic_test_and_set
__atomic_fetch_add
__atomic_compare_exchange
...and so on

• These mirror the fetch-and-phi ops of olden times
• They’re actually there because they are used to implement the

atomics defined in C++ since 2011
• You can call them yourself, if you like

– They’re probably supported by clang too, but I haven’t looked

14

The nasty part of all this

• At the CPU architecture / assembly instruction level,
atomics differ from design to design
– ...and not everyone likes to mix assembly with their high-level source

code

• At the O/S compiler level, atomics aren’t standardized
– The builtin functions of GCC are just a design decision that the GCC

people invented
– It’s popular to be GCC-compatible, but it’s not mandatory

• This is not good for writing portable code

15

Atomic ops in OpenMP
• In the name of portability, OpenMP assumes that your architecture

has some range of atomic instructions that can be used on these
statements:

x++ ++x x-- --x
x += (expr) x = x + (expr) x = (expr) + x
x -= (expr) x = x - (expr) x = (expr) - x
x *= (expr) x = x * (expr) x = (expr) * x
x /= (expr) x = x / (expr) x = (expr) / x
x &= (expr) x = x & (expr) x = (expr) & x
x ^= (expr) x = x ^ (expr) x = (expr) ^ x
x |= (expr) x = x | (expr) x = (expr) | x
x <<= (expr) x = x << (expr) x = (expr) << x
x >>= (expr) x = x >> (expr) x = (expr) >> x

16

The atomic directive

• If you want to make an expression like that atomic,
just prefix it like so:

#pragma omp atomic
x += my_local_value

• We can apply this to our pi example from last time
• Implementation in today’s example code archive,

pi_atomic_openmp.c
– Note that the lock is gone, along with its initialization and

destruction

17

Bigger critical sections
• The statements that can be made atomic are all quite short and

sweet
– Their protection mechanism is expected to be a single instruction

• If we have a longer bit of code to protect, we already know how
to do it with a lock

• We can make OpenMP generate the lock too
#pragma omp critical
{

/* Only one thread will come in here at a time */
}

• Almost redundant example code: pi_critical_openmp.c

18

Last of the mutual exclusion
• As we’ve noted, OpenMP threads can be spawned and joined

many times throughout a program
• Execution typically runs in bursts of parallelism:

• One of these threads spawns the others, and lives on
afterwards

• In OpenMP terminology
– The collective is called a team
– The spawning/joining thread is called the team’s master

Parallel work Parallel work

19

The master directive

• Inside a parallel region, you can label a block like this
#pragma omp parallel
{

/* Lots of threads run here */
#pragma omp master
{

/* Only the master thread will come in here */
}

}

20

A final pi example
• The same program is implemented again in pi_master_openmp.c,

using the obvious mechanism
• The structure is a little different

– omp_get_max_threads() obtains the thread count outside of a parallel region, and
sizes up an array with an entry per thread

– All the worker-threads put their partial pi estimates in that array
– There’s a barrier to make sure that everyone’s work is finished
– The master section adds up the final global sum

• The example is a little contrived
– For this problem, it would be easier to shut down the threads and do the sum

afterwards
– Still, you can see the principle at work

Footnote: This version is also quite slow, we will get back to the reason later

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

