

1

OpenMP worksharing directives

Jan.Christian.Meyer@ntnu.no

2

Partitioning shared work

• So far, we’ve been assigning work to threads based on their index in
the thread pool:

int tid = openmp_get_thread_num();

• This is a little bit of a hassle
– For thread-specific blocks of code, we need something like this

if (tid == 0) { /* Do one thing */ }

else if (tid == 1) { /* Do another thing */ }

…

– For loops, we need to combine the index with the induction variable to work out a selection
of iterations

for (int x=tid; x<x_max; x+=n_threads) ← round robin

for (int x=bottom[tid]; x<top[tid]; x++) ← consecutive range

• It is not super difficult, but it’s repetitive to type every time
– Also extremely common, so it can be automated

3

Worksharing directives to the rescue!

• These are OpenMP directives that can split a given
workload between threads for you, without requiring
you to do anything based on the thread id#

• We’ll look at three flavors
– Sections

– Loops

– Single

4

Functional decomposition

• This is when we split the work by the function of its sub-tasks
– We’ve talked about it in terms of pipelining

This thing only
installs seats This thing only

slaps on doors

Partial products roll past in this directionThroughput doubles
when the pipeline is full

5

Data decomposition

• This is when we split the work by the input/output of its
sub-tasks
– Pretty much all we’ve been doing so far, because you don’t have to

design additional code in order to increase the number of participants

Everyone does
the same thing

They do it to individually assigned parts of a field

6

Sections

• For functional decomposition, OpenMP has sections
#pragma omp parallel

{
#pragma omp sections

{

#pragma omp section

{ /* Section #1 */ }

#pragma omp section

{ /* Section #2 */ }

#pragma omp section

{ /* Section #3 */ }

}

}

Each of these
will be run by
one thread

7

Implicit synchronization

• Worksharing directives have an implicit barrier at the end
#pragma omp parallel

{
#pragma omp sections

{

#pragma omp section

{ /* Section #1 */ }

#pragma omp section

{ /* Section #2 */ }

#pragma omp section

{ /* Section #3 */ }

}

}

All threads will
synchronize here
by default

8

Implicit synchronization

• Because they very often occur just after each other
#pragma omp parallel

{
#pragma omp sections

{

#pragma omp section

{ /* Section #1 */ }

#pragma omp section

{ /* Section #2 */ }

}

#pragma omp sections

{

#pragma omp section

{ /* Section #3 */ }

#pragma omp section

{ /* Section #4 */ }

}

}

Implicit barriers
make these two
blocks of sections
work as separate stages

Finish these first

Synchronize

Synchronize again

Finish these next

9

Clauses

• Most OpenMP directives have an optional set of
additional terms that can control details of their
semantics
– We’ve already seen the num_threads clause for the parallel

directive

• The worksharing directives have a clause nowait
– Its use indicates that you wish to omit the implicit barrier at the end

10

nowait in practice

• The nr. of sections limits the number of threads in use, additional threads wait
#pragma omp parallel

{
#pragma omp sections

{

#pragma omp section

{ /* Section #1 */ }

#pragma omp section

{ /* Section #2 */ }

}

#pragma omp sections

{

#pragma omp section

{ /* Section #3 */ }

#pragma omp section

{ /* Section #4 */ }

}

}

By default, this example
will only use 2 threads
at a time

Two threads here

Two threads here

Stop

11

nowait in practice

• If we omit the implicit barrier, additional threads will “fall through” and start working
#pragma omp parallel

{
#pragma omp sections nowait

{

#pragma omp section

{ /* Section #1 */ }

#pragma omp section

{ /* Section #2 */ }

}

#pragma omp sections

{

#pragma omp section

{ /* Section #3 */ }

#pragma omp section

{ /* Section #4 */ }

}

}

Here, we have enough
sections to employ
4 threads at a time

Two threads here

Two more threads
here, right away

Skip the barrier

12

That’s a silly example

• Yes, it is.
– A simpler way to write the same effect would be to just include all

four sections under the same #pragma omp sections
directive to begin with

• I just wanted to make a simple illustration of the
nowait clause
– It applies to the other worksharing directives as well

– It’s occasionally useful

13

Saving some keystrokes
• A very common use case is to start some threads only to give them exactly 1

worksharing directive
– With sections as an example, it creates this pattern

#pragma omp parallel

{
#pragma omp sections

{

…

}

}

• Because it’s redundant to separate the thread starting/stopping directive from the
work partitioning when there’s only 1, we can write them together

#pragma omp parallel sections

{

 ...

}

• This means exactly the same thing as above

(But there will always be an implicit synch. at the end, because the threads join there)

14

Loops

• When we’ve parallelized loops so far, we’ve done it by partitioning its iteration space
for (i=tid; i<N; i+=n_threads)

• assigns every (n_threads)th iteration to a thread

for (i=bottom[tid]; i<top[tid]; i++)
• assigns blocks of top[tid]-bottom[tid] iterations to a thread

• When we have a loop with an induction variable (such as for loops in C) this assignment can
be done automatically

#pragma omp parallel for

for (int i=0; i<N; i++)

makes some default mapping of iterations to threads
(Note that we didn’t have to join the “parallel” and “for” parts, you can also have several instances of
#pragma omp for inside one #pragma omp parallel)

• There’s no equivalent for while loops, because we can’t predict their iteration counts
in the same way

(There’s another technique, but we’ll get back to it)

15

Data sharing clauses

• So far, we’ve been discriminating between private and shared values
by the scope we declare them in

int a = 42; ← shared

#pragma omp parallel

{
int tid = omp_get_thread_num(); ← private

}

• This works
– The default behaviour is obvious when you see its connection to stack contexts

• It can be impractical
– Worksharing directives have clauses that can explicity specify what should be shared and

private instead
– Useful when your declarations are easier to read when you put them in the “wrong” scope

16

Shared and private

• We can revisit our running pi example once more
pi_shared_private.c in today’s example archive

• I have made all the variable declarations global
– That is a questionable decision, but we’re just making a point here

• The pi value has to be shared among threads
– The parallel directive has a clause “shared(pi)”

• The tid, n_threads, x and pi_local values should be private
– The parallel directive has a clause “private(pi_local,x,tid,n_threads)”

• Everything still works as expected
– OpenMP inserts the necessary cloning of space into stack frames at the

directive

17

Reduction

• When a shared variable is the target of a global sum,
product, logical-and, etc. etc.

(the usual bunch of operations we can make reductions out of)

OpenMP can figure out a way to coordinate local
additions to the global total all on its own

• The clause
reduction(operator:variable)

says that variable is the target of a global reduction using
the operator

(and leaves the fiddly synchronization parts to OpenMP)

18

The pi example in its final form
• This is the way I’ve been aching to write it all along:

#define _XOPEN_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>

#define STEPS (1e8)
#define H (1.0/STEPS)

int main (int argc, char **argv) {
 double pi = 0.0;

 #pragma omp parallel for reduction(+:pi)
 for (int64_t i=0; i<STEPS; i++)
 pi += H / (1.0 + (i*H)*(i*H));

 pi *= 4.0;
 printf ("Estimated %e, missed by %e\n", pi, fabs(pi-M_PI));
 exit (EXIT_SUCCESS);
}

(Now we know everything that’s being automatically handled for us, though)

19

Data sharing clauses
(there are a couple more)

• private(variable) doesn’t actually say what the initial
value of ‘variable’ should be
– Your thread should take care to assign it

• If you’re privatizing a shared value, its initial state
makes a natural value to give to all the private copies
– You can specify this as firstprivate(variable)

• When the threaded region ends, you may want to put
one of the private copies back into the shared copy
– You can specify lastprivate(variable) to get its “final” state

20

{first,last}private semantics

• The idea of ‘firstprivate’ is to initialize all local copies in a parallel for
loop with the value that the global copy has in the first iteration of a
sequential run

• The idea of ‘lastprivate’ is to leave behind the local copy that the
global one would have in the last iteration of a sequential run
– i.e. the thread that sets the lastprivate value at the end of the parallel region is the one

that was assigned the final iteration
– This is not necessarily the same as the thread that finishes first chronologically (that

would produce a race condition)

• When applied to sections, the sections that literally appear first and
last in the source code take on the roles of “first and last iteration”
for this purpose

21

Single

• Our final worksharing directive today is
#pragma omp single

{

}

• This means that even if many threads reach this region, only one
of them will execute it

Typically, the first one that gets there

• It doesn’t make much sense on its own, but we can insert single-
regions in the middle of parallel loops to useful effect sometimes

(Remember that it’s a worksharing directive, though, so it comes with a barrier
unless you disable it)

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

