NTNU - Trondheim
Norwegian University of

Science and Technology

OpenMP worksharing directives

LY
www.ntnu.edu > Jan.Christian.Meyer@ntnu.no

A}

Partitioning shared work

* So far, we’'ve been assigning work to threads based on their index in
the thread pool:
int tid = openmp_get_thread_num();
* This is a little bit of a hassle

— For thread-specific blocks of code, we need something like this
if (tid==0) {/* Do one thing */ }
else if (tid == 1) { /* Do another thing */ }

— For loops, we need to combine the index with the induction variable to work out a selection
of iterations

for (int x=tid; x<x_max; x+=n_threads) ~ round robin
for (int x=bottom|[tid]; x<top[tid]; x++) —~ consecutive range

* Itis not super difficult, but it's repetitive to type every time
— Also extremely common, so it can be automated

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Worksharing directives to the rescue!

* These are OpenMP directives that can split a given
workload between threads for you, without requiring
you to do anything based on the thread id#

e We'll look at three flavors

— Sections
— Loops
— Single

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

Functional decomposition

* This is when we split the work by the function of its sub-tasks
— We've talked about it in terms of pipelining

This thing only o
installs seats « This thing only

slaps on doors

.]) . ; NTNU - Trondheim

Throughput doubles Partial products roll past in this direction E Norwegian University of

h the pipeline is full Science and Technology
wnen

L

www.ntnu.edu ¥

Data decomposition

* This is when we split the work by the input/output of its
sub-tasks

— Pretty much all we've been doing so far, because you don’t have to
design additional code in order to increase the number of participants

Everyone does
the same thing

\

i \

I' \\\\\
T T NTNU - Trondheim
Norwegian University of

%§ » \.\ \\.‘ \
. . L. . . Science and Technology
They do it to individually assigned parts of a field

L

www.ntnu.edu '

\

Sections

* For functional decomposition, OpenMP has sections
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{ I* Section #1 */ } ‘\ Each of these

#pragma omp section)
{ I* Section #2 ¥/} < will be run by

#pragma omp section / one thread
{ I* Section #3 */ }

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Implicit synchronization

* Worksharing directives have an implicit barrier at the end
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section
{ I* Section #1 */ }
#pragma omp section
{ I* Section #2 */ }
#pragma omp section

{/* Section #3 */ } All threads will
synchronize here
by default

NTNU = Trondheim

Wh'orwegian University of
Science and Technology
\
www.ntnu.edu -

Implicit synchronization

* Because they very often occur just after each other
#pragma omp parallel

{
#pragma omp sections
{
#pragma omp section L)
{ I* Section #1 %/ } < Finish these first
#pragma omp section A :
(i Soction s o] Synchronize Implicit barriers
} < make these two
#pragma omp sections .
{ | blocks of sections
#pragma omp section Finish these next work as separate stages
{ I* Section #3 */ } «
#pragma omp section
< {/" Section #4 7/} Synchronize again
}

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Clauses

* Most OpenMP directives have an optional set of
additional terms that can control details of their

semantics
— We've already seen the num_threads clause for the parallel
directive
* The worksharing directives have a clause nowait
— Its use indicates that you wish to omit the implicit barrier at the end

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

nowalt in practice

* The nr. of sections limits the number of threads in use, additional threads wait
#pragma omp parallel

{
#pragma omp sections
{
#pragma omp section
{ I* Section #1 %/ } < Two threads here
#pragma omp section
} {* Section #2*/} Stop By default, this example
< :
#pragma omp sections will only use 2 threads
{ | at a time
#pragma omp section Two threads here
{ I* Section #3 */ } <
#pragma omp section
{ I* Section #4 */ }
}
}

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

nowalt in practice

* If we omit the implicit barrier, additional threads will “fall through” and start working
#pragma omp parallel

{ _ _ Skip the barrier
#pragma omp sections nowait <
{
#pragma omp section
{ I* Section #1 */ } Two threads here
#pragma omp section <
, e Here, we have enough
#pragma omp sections Secnons to employ
{ .
#pragma omp section Two m_ore threads 4 threadS at a t|me
{ I* Section #3 */ } here, right away

, <
#pragma omp section

{ I* Section #4 */ }

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

That’s a silly example

* Yes, Itis.

— A simpler way to write the same effect would be to just include all
four sections under the same #pragma omp sections
directive to begin with

* | just wanted to make a simple illustration of the
nowait clause

— It applies to the other worksharing directives as well
— It's occasionally useful

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Saving some keystrokes

* A very common use case is to start some threads only to give them exactly 1
worksharing directive
— With sections as an example, it creates this pattern
#pragma omp parallel

{

#pragma omp sections

{

}

* Because it's redundant to separate the thread starting/stopping directive from the
work partitioning when there’s only 1, we can write them together
#pragma omp parallel sections

{

}
* This means exactly the same thing as above

(But there will always be an implicit synch. at the end, because the threads join there)

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

LoopS

* When we've parallelized loops so far, we've done it by partitioning its iteration space
for (i=tid; i<N; i+=n_threads)
* assigns every (n_threads)™ iteration to a thread
for (i=bottom[tid]; i<top[tid]; i++)
* assigns blocks of top[tid]-bottom[tid] iterations to a thread
* When we have a loop with an induction variable (such as for loops in) this assignment can
be done automatically
#pragma omp parallel for
for (inti=0; i<N; i++)
makes some default mapping of iterations to threads
(Note that we didn’t have to join the “parallel” and “for” parts, you can also have several instances of
#pragma omp for inside one #pragma omp parallel)
* There’s no equivalent for while loops, because we can'’t predict their iteration counts
in the same way
(There’s another technique, but we’ll get back to it)

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Data sharing clauses

* So far, we've been discriminating between private and shared values
by the scope we declare them in

inta =42; ~ Shared
#pragma omp parallel
{

int tid = omp_get_thread_num(); ~ private
}

* This works
— The default behaviour is obvious when you see its connection to stack contexts

* It can be impractical

— Worksharing directives have clauses that can explicity specify what should be shared and
private instead

— Useful when your declarations are easier to read when you put them in the “wrong” scope

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Shared and private

* \We can revisit our running pi example once more
pi_shared_private.c in today’s example archive

| have made all the variable declarations global
— That is a questionable decision, but we’re just making a point here

The pi value has to be shared among threads
— The parallel directive has a clause “shared(pi)”

The tid, n_threads, x and pi_local values should be private
— The parallel directive has a clause “private(pi_local,x,tid,n_threads)”

Everything still works as expected

— OpenMP inserts the necessary cloning of space into stack frames at the
directive

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Reduction

* When a shared variable is the target of a global sum,
product, logical-and, etc. etc.
(the usual bunch of operations we can make reductions out of)

OpenMP can figure out a way to coordinate local
additions to the global total all on its own

* The clause
reduction(operator:variable)

says that variable is the target of a global reduction using
the operator
(and leaves the fiddly synchronization parts to OpenMP)

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

The pi example In its final form

* This is the way I've been aching to write it all along:

#define XOPEN_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>

#define STEPS (1e8)
#define H (1.0/STEPS)

int main (int argc, char **argv) {
double pi = 0.0;

#pragma omp parallel for reduction(+:pi)
for (int64_t i=0; i<STEPS; i++)
pi += H/ (1.0 + (i*H)*(i*H));

pi *=4.0;
printf ("Estimated %e, missed by %e\n", pi, fabs(pi-M_PI));
exit (EXIT_SUCCESS);

}

NTNU - Trondheim
Norwegian University of
Science and Technology

(Now we know everything that’s being automatically handled for us, though)

www.ntnu.edu ¥

Data sharing clauses

(there are a couple more)

* private(variable) doesn’t actually say what the initial
value of ‘variable’ should be
— Your thread should take care to assign it
* If you're privatizing a shared value, its initial state

makes a natural value to give to all the private copies
— You can specify this as firstprivate(variable)

* When the threaded region ends, you may want to put
one of the private copies back into the shared copy
— You can specify lastprivate(variable) to get its “final” state

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

{first,last}private semantics

* The idea of ‘firstprivate’ is to initialize all local copies in a parallel for
loop with the value that the global copy has in the first iteration of a
sequential run

* The idea of ‘lastprivate’ is to leave behind the local copy that the

global one would have in the last iteration of a sequential run

— I.e. the thread that sets the lastprivate value at the end of the parallel region is the one
that was assigned the final iteration

— This is not necessarily the same as the thread that finishes first chronologically (that
would produce a race condition)

* When applied to sections, the sections that literally appear first and
last in the source code take on the roles of “first and last iteration”
for this purpose

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Single

* OQur final worksharing directive today is
#pragma omp single
{
}

* This means that even if many threads reach this region, only one
of them will execute it
Typically, the first one that gets there
* It doesn’'t make much sense on its own, but we can insert single-

regions in the middle of parallel loops to useful effect sometimes

(Remember that it's a worksharing directive, though, so it comes with a barrier
unless you disable it)

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

