

1

OpenMP loop scheduling & threads vs. caches

Jan.Christian.Meyer@ntnu.no

2

Today’s topic

• We’ve gone through some OpenMP directives
– Enabling/disabling a team of threads

– Atomicity directives: atomic, critical, and master

– Worksharing directives: sections, for, and single

– Data sharing clauses: shared, private, reduction, firstprivate, lastprivate

• We also suggested that for directive has a clause to
direct how it partitions the iteration space
– Let’s look at it today

3

schedule(kind,blocksize)

• This is it.
• The blocksize is an optional, positive integer which

we shall discuss imminently
• The kind is one of these:

– static

– dynamic

– guided

– auto

– runtime

4

A unit of work

• When OpenMP partitions an iteration space between threads,
it has some leeway with how many iterations to include in “one
work unit”

• The absolutely smallest unit available/possible is to distribute 1
iteration at a time
– Units of 1 iteration gives the round-robin assignment we’ve worked out manually

• Depending on how much work each iteration contains, 1
iteration can easily be a bit on the short side

• Increasing the unit size makes the work distribution more
coarse-grained

5

Small vs. big work units

• Big blocks:
– Fewer units to distribute, and hence, less scheduling to do

BUT

– There’s a limit to how big the blocks should be

– At the extreme end: if the entire iteration space is one big block,
we’ve taken away all the parallelism again

• Small blocks:
– More units to distribute, more disruptions in memory access pattern

BUT

– Greater flexibility to assign work to unemployed threads

6

The block size

• It’s easy to assume that the block size parameter of the
schedule is the number of iterations handed to each
thread

• This is not always true
• It is the minimal number of iterations handed to a thread

– Some of the schedule kinds take the liberty to hand out bigger blocks
– They won’t hand out smaller blocks if they can help it, though
– It’s intended to be a measure of how few iterations it can make sense

to lump together
– This number depends on the details of your program, so you can set it

7

Automatic schedule

• This is the default kind
• It doesn’t have to be a particular fixed kind, it’s the

one that your OpenMP implementation nominates as
most likely to the best job in the greatest number of
cases

• It tends to be a good guess for nested loops that
sweep over multidimensional arrays with
approximately equal workloads per element
– That’s a very common use case

8

Runtime schedule

• This is for when you don’t want to embed the choice of
schedule into your program

• With a runtime schedule, your OpenMP program will
search the calling shell’s environment variables for a
specification of what to use on each run:

export OMP_SCHEDULE=”static,4”

./my_program # program runs with schedule(static,4) as default

export OMP_SCHEDULE=”dynamic,16”

./my_program # program runs with schedule(dynamic,16) instead

9

Static schedule

• This is the schedule we’ve been calculating by hand
throughout all this threading stuff

• Given an iteration space

schedule(static,6) will assign iterations to e.g. threads
0, 1, and 2, thus:

0 max

0 max

10

The master/worker pattern

• We haven’t made much use of it, but a common way to
implement work sharing in queued systems is to
– Keep an active thread pool of available worker threads

– Keep a queue of finite work packages (which may or may not grow/shrink
while the program is running)

– Assign the next package in the queue every time a worker thread becomes
available

• Web servers, transactional databases, and other on-line
request processing systems tend to do this
– HPC programs rarely have infinite streams of incoming requests

– They still use this pattern to achieve some measure of load balancing when
the amount of work in each package is unevenly distributed

11

Dynamic schedule

• The dynamic kind of schedule works this way
• We can illustrate schedule(dynamic,2) with our

iteration space and 3 threads again:
Everyone gets something to begin with

If thread 1 finishes first, it gets the next unit

Thread 0 may be the next one out

By now, thread 2 may have come around

0 max

0 max

0 max

0 max

...and so, it continues...

12

Guided schedule

• This one is similar to dynamic, but acknowledges the
observation that we probably have a barrier coming up at the
end of the loop

• While the barrier remains far in the future, it doesn’t matter so
much how big the blocks are
– Workers that run out of work can just pick up some more

• When the barrier is imminent, it’s a mistake to hand out a giant
workload to one worker
– Everyone else will have to wait for it to finish

• Guided schedule starts with big blocks and gradually shrink
them down to the blocksize

13

schedule(guided,1) illustrated

• Everyone gets lots of work at the beginning:

• Past the halfway mark, we should probably shrink the
workloads we dispense:

• Near the end, everyone gets the smallest available
block sizes, to minimize the inevitable wait

0 max

0 max

0 max

0 max

14

Demonstration time

• Today’s code archive has a subdirectory 01_fractal
– It has an OpenMP-enabled Mandelbrot set generator in it

• We don’t have to dwell on the calculation, but the output
image looks like this:
– The important characteristic is

that a black point represents a loop

that has terminated immediately,

while a white point has required 256

iterations

• The loop over the y-axis is the parallel one
• Clearly, some horizontal lines contain much more work

than others

15

The experiment

• The program times its own execution
– Conveniently, this also lets us demonstrate the function

double omp_get_wtime (void);

– It’s exactly like MPI_Wtime(), in that it returns some number of
seconds

– It’s also exactly like MPI_Wtime() in that implementations tend to
use precisely the same system clock

• If our theory is correct, this program might run faster
with a guided schedule than with the automatic
– Let’s try it out

16

While we are on the topic

• Since we’re talking about distributions of loop
iterations, there is another effect I would like to
demonstrate

• Today’s experiment #2 is found in 02_advection
– It’s our 2D advection equation solver from before

– Now with OpenMP instead of MPI
(and a slight y-velocity added, just to make the pictures a little different for a change)

– It’s also parallelized along the y-axis to begin with

17

Here’s what I will do

• Move the parallel for directive to the inner (x) loop
– The program slows down quite a lot
– Is it because of the constant thread starting/stopping?

• Separate the parallel from the for
– Slowdown was partly from the start/stop behaviour, but it’s still slow
– Is because of the incessant barriers?

• Try it with nowait
– Performance is almost up to snuff again, but it’s not spectacular

• There is an effect here that I want to provoke
– Its worst possible behaviour should appear with schedule(static,1)

18

What’s going on?

• x-coordinates are adjacent to each other in memory
– Hence, the majority of neighbor values occupy the same cache line

– We’ve assigned a different thread to each consecutive value

– Different threads live on different cores

– Different cores have different private (Level-1) caches

• It’s fine as long as they read values that are close
– Every core can have a copy of the cache line

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Array cells
marked for
thread 0 or 1

Core 0
Cache:

Core 1
Cache:

Copies triggered
by iterations 0-7

19

When core 0 wants to write something

• A change in the cache line’s values means core 1s
copy is out-of-sync with the state of memory it’s
supposed to reflect

• This can be detected as soon as core 0 sends its
update away, but memory doesn’t update as quickly

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Core 0
Cache:

Core 1
Cache:

0

This line must be discarded and re-loaded

20

When core 0 wants to write something

• When memory finally is updated, core 1 still has to
fetch a fresh copy

• This takes at least as many cycles as a cache miss

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Core 0
Cache:

Core 1
Cache:

0

21

Then, core 1 wants to write something

• ...and the whole circus repeats

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Core 0
Cache:

Core 1
Cache:

0

Your copy is old

Oh, no!

22

This is called false sharing

• It’s “false” because the threads don’t actually share any
of the values inside the cache line

• It’s “sharing” because it comes with the same overhead
as synchronizing access to a shared variable

• Very expensive when it happens constantly
– Like in that pi-example we made with the locking inside the

integration loop
– Beware, you don’t need an actual shared value to create the effect
– Two thread-assigned values that happen to sit right next to each

other in memory will do

23

We only get this effect with threads

• MPI ranks are immune to false sharing because they
don’t even share memory frames, much less cache
lines

• Threads don’t get it with the private variables on their
stacks, because those aren’t right next to each other

• We can create false sharing when assigning sub-areas
of a shared memory segment to distinct threads

• I propose that it’s best not to create false sharing
– Now we know it exists, so we won’t create it by accident

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

