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Today’s topic

• We’ve gone through some OpenMP directives
– Enabling/disabling a team of threads

– Atomicity directives: atomic, critical, and master

– Worksharing directives: sections, for, and single

– Data sharing clauses: shared, private, reduction, firstprivate, lastprivate

• We also suggested that for directive has a clause to 
direct how it partitions the iteration space
– Let’s look at it today
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schedule(kind,blocksize)

• This is it.
• The blocksize is an optional, positive integer which 

we shall discuss imminently
• The kind is one of these:

– static

– dynamic

– guided

– auto

– runtime
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A unit of work

• When OpenMP partitions an iteration space between threads, 
it has some leeway with how many iterations to include in “one 
work unit”

• The absolutely smallest unit available/possible is to distribute 1 
iteration at a time
– Units of 1 iteration gives the round-robin assignment we’ve worked out manually

• Depending on how much work each iteration contains, 1 
iteration can easily be a bit on the short side

• Increasing the unit size makes the work distribution more 
coarse-grained
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Small vs. big work units

• Big blocks:
– Fewer units to distribute, and hence, less scheduling to do

BUT

– There’s a limit to how big the blocks should be

– At the extreme end: if the entire iteration space is one big block, 
we’ve taken away all the parallelism again

• Small blocks:
– More units to distribute, more disruptions in memory access pattern

BUT

– Greater flexibility to assign work to unemployed threads
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The block size

• It’s easy to assume that the block size parameter of the 
schedule is the number of iterations handed to each 
thread

• This is not always true
• It is the minimal number of iterations handed to a thread

– Some of the schedule kinds take the liberty to hand out bigger blocks
– They won’t hand out smaller blocks if they can help it, though
– It’s intended to be a measure of how few iterations it can make sense 

to lump together
– This number depends on the details of your program, so you can set it
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Automatic schedule

• This is the default kind
• It doesn’t have to be a particular fixed kind, it’s the 

one that your OpenMP implementation nominates as 
most likely to the best job in the greatest number of 
cases

• It tends to be a good guess for nested loops that 
sweep over multidimensional arrays with 
approximately equal workloads per element
– That’s a very common use case
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Runtime schedule

• This is for when you don’t want to embed the choice of 
schedule into your program

• With a runtime schedule, your OpenMP program will 
search the calling shell’s environment variables for a 
specification of what to use on each run:

export OMP_SCHEDULE=”static,4”

./my_program      # program runs with schedule(static,4) as default

export OMP_SCHEDULE=”dynamic,16”

./my_program      # program runs with schedule(dynamic,16) instead
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Static schedule

• This is the schedule we’ve been calculating by hand 
throughout all this threading stuff

• Given an iteration space

schedule(static,6) will assign iterations to e.g. threads 
0, 1, and 2, thus:

0 max

0 max
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The master/worker pattern

• We haven’t made much use of it, but a common way to 
implement work sharing in queued systems is to
– Keep an active thread pool of available worker threads

– Keep a queue of finite work packages (which may or may not grow/shrink 
while the program is running)

– Assign the next package in the queue every time a worker thread becomes 
available

• Web servers, transactional databases, and other on-line 
request processing systems tend to do this
– HPC programs rarely have infinite streams of incoming requests

– They still use this pattern to achieve some measure of load balancing when 
the amount of work in each package is unevenly distributed
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Dynamic schedule

• The dynamic kind of schedule works this way
• We can illustrate schedule(dynamic,2) with our 

iteration space and 3 threads again:
Everyone gets something to begin with

If thread 1 finishes first, it gets the next unit

Thread 0 may be the next one out

By now, thread 2 may have come around

0 max

0 max

0 max

0 max

...and so, it continues...
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Guided schedule

• This one is similar to dynamic, but acknowledges the 
observation that we probably have a barrier coming up at the 
end of the loop

• While the barrier remains far in the future, it doesn’t matter so 
much how big the blocks are
– Workers that run out of work can just pick up some more

• When the barrier is imminent, it’s a mistake to hand out a giant 
workload to one worker
– Everyone else will have to wait for it to finish

• Guided schedule starts with big blocks and gradually shrink 
them down to the blocksize
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schedule(guided,1) illustrated

• Everyone gets lots of work at the beginning:

• Past the halfway mark, we should probably shrink the 
workloads we dispense:

• Near the end, everyone gets the smallest available 
block sizes, to minimize the inevitable wait

0 max

0 max

0 max

0 max
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Demonstration time

• Today’s code archive has a subdirectory 01_fractal
– It has an OpenMP-enabled Mandelbrot set generator in it

• We don’t have to dwell on the calculation, but the output 
image looks like this:
– The important characteristic is

that a black point represents a loop

that has terminated immediately,

while a white point has required 256

iterations

• The loop over the y-axis is the parallel one
• Clearly, some horizontal lines contain much more work 

than others
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The experiment

• The program times its own execution
– Conveniently, this also lets us demonstrate the function

double omp_get_wtime (void);

– It’s exactly like MPI_Wtime(), in that it returns some number of 
seconds

– It’s also exactly like MPI_Wtime() in that implementations tend to 
use precisely the same system clock

• If our theory is correct, this program might run faster 
with a guided schedule than with the automatic
– Let’s try it out
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While we are on the topic

• Since we’re talking about distributions of loop 
iterations, there is another effect I would like to 
demonstrate

• Today’s experiment #2 is found in 02_advection
– It’s our 2D advection equation solver from before

– Now with OpenMP instead of MPI
(and a slight y-velocity added, just to make the pictures a little different for a change)

– It’s also parallelized along the y-axis to begin with
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Here’s what I will do

• Move the parallel for directive to the inner (x) loop
– The program slows down quite a lot
– Is it because of the constant thread starting/stopping?

• Separate the parallel from the for
– Slowdown was partly from the start/stop behaviour, but it’s still slow
– Is because of the incessant barriers?

• Try it with nowait
– Performance is almost up to snuff again, but it’s not spectacular

• There is an effect here that I want to provoke
– Its worst possible behaviour should appear with schedule(static,1)
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What’s going on?

• x-coordinates are adjacent to each other in memory
– Hence, the majority of neighbor values occupy the same cache line

– We’ve assigned a different thread to each consecutive value

– Different threads live on different cores

– Different cores have different private (Level-1) caches

• It’s fine as long as they read values that are close
– Every core can have a copy of the cache line

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Array cells
marked for
thread 0 or 1

Core 0
Cache:

Core 1
Cache:

Copies triggered
by iterations 0-7
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When core 0 wants to write something

• A change in the cache line’s values means core 1s 
copy is out-of-sync with the state of memory it’s 
supposed to reflect

• This can be detected as soon as core 0 sends its 
update away, but memory doesn’t update as quickly

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Core 0
Cache:

Core 1
Cache:

0

This line must be discarded and re-loaded
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When core 0 wants to write something

• When memory finally is updated, core 1 still has to 
fetch a fresh copy

• This takes at least as many cycles as a cache miss

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Core 0
Cache:

Core 1
Cache:

0
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Then, core 1 wants to write something

• ...and the whole circus repeats

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Core 0
Cache:

Core 1
Cache:

0

Your copy is old

Oh, no!
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This is called false sharing

• It’s “false” because the threads don’t actually share any 
of the values inside the cache line

• It’s “sharing” because it comes with the same overhead 
as synchronizing access to a shared variable

• Very expensive when it happens constantly
– Like in that pi-example we made with the locking inside the 

integration loop
– Beware, you don’t need an actual shared value to create the effect
– Two thread-assigned values that happen to sit right next to each 

other in memory will do
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We only get this effect with threads

• MPI ranks are immune to false sharing because they 
don’t even share memory frames, much less cache 
lines

• Threads don’t get it with the private variables on their 
stacks, because those aren’t right next to each other

• We can create false sharing when assigning sub-areas 
of a shared memory segment to distinct threads

• I propose that it’s best not to create false sharing
– Now we know it exists, so we won’t create it by accident
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