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Our topic today

• Last time, we ended on a brief discussion of false 
sharing

• We skipped a few details about what happens when 
two cores are fighting for a cache line
– The book actually touched upon this all the way back in Chapter 2

– It is high time that we talk about it in lecture as well
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A quick recap

• When one CPU wants to read an un-cached value...

Control ALU

Cache

Give me adr. #20!

Ok!
(here are a few more, too)

CPU

Memory

Interconnect
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A quick recap

• When one CPU wants to read another (now cached) value...

Control ALU

Cache
Give me adr. #21!

CPU

Memory

Interconnect

Ok!

(silence)

(silence)
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Writing

• When one CPU wants to write a cached value...

Control ALU

Cache
Set this in adr. #21!

CPU

Memory

Interconnect

Ok!

This copy is now out of date,
but we don’t know it yet

(silence)
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We have two options

• Push write operations straight through the cache 
memory, and update main memory as soon as possible

+ Simple and inexpensive implementation

-  May create constant memory traffic

• Delay write operations in memory, continue working 
with the cached copy

+ Doesn’t do unneccessary work

-  Requires more complex circuitry and wiring

(it’s a silmilar tradeoff to eager vs. lazy evaluation in programming languages)
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Write-through caching

• Write-through caches immediately pass their updates to main 
memory via the interconnect

Control ALU

Cache
Set this in adr. #21!

CPU

Memory

Interconnect

Ok!

Here’s a copy for you as well:

Got it!
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Write-back caching

• Write-back caches retain their updates until it is convenient to report 
them back to main memory

Control ALU

Cache
Set this in adr. #21!

CPU

Memory

Interconnect

Ok!

Out of date

(silence)

Mark this line
as updated
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Write-back caching

• Write-back caches retain their updates until it is convenient to report 
them back to main memory

Control ALU

Cache
Set this in adr. #22!

CPU

Memory

Interconnect

Ok!

Out of date

(silence)
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Write-back caching

• Write-back caches retain their updates until it is convenient to report 
them back to main memory

Control ALU

Cache
Set this in adr. #23!

CPU

Memory

Interconnect

Ok!

Out of date

(silence)
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Write-back caching

• Write-back caches retain their updates until it is convenient to report 
them back to main memory

Control ALU

Cache

Here are the latest news:

CPU

Memory

Interconnect

All right

Mark this line
as in-sync again
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This is fine for one CPU

• It doesn’t matter if main memory reflects the cache 
state
– ...as long as we have the cached copy to work with anyway, 

memory can update at its own leisurely pace

– We’ll have to wait for it to catch up at I/O operations and other 
things that have direct memory access

– That’s ok, those are slower than memory anyway
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It’s less fine for many CPUs

• Effectively, the other CPUs are devices with direct memory access 
that work at the same speed:

Control ALU

Cache

CPU 0

Memory

Interconnect

This copy is out of date,
but we don’t know it yet

Control ALU

Cache

CPU 1

Give me adr. #20!

Now what?
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Cache coherence

• The issue of keeping multiple caches up to date with 
each others’ modified values is called the cache 
coherence problem

• Its solutions fall into two categories
– Snooping

i.e. allowing CPUs to listen in on each others’ memory traffic via shared 
branches of the interconnect

– Directory
i.e. maintaining a centralized registry of cache lines and the various 
states they are in
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Snooping
(with write-through)

• This approach comes from machines with a single, shared 
memory bus as interconnect

Control ALU

Cache
Set this in adr. #21!

CPU 0

Memory

Interconnect

Ok!

Here’s a copy:

Got it!

Control ALU

Cache

CPU 1

A-HA!
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Snooping
(with write-back)
• While the cache line is out of date, only 1 bit needs to be broadcast

Control ALU

Cache

CPU 0

Memory

Interconnect

Control ALU

Cache

CPU 1

I have changed
adr. #22,

Ok, the line is “dirty”

I won’t use this
until it’s clean



  

17

Snooping
(with write-back)
• While the cache line is out of date, only 1 bit needs to be broadcast

Control ALU

Cache

CPU 0

Memory

Interconnect

Control ALU

Cache

CPU 1

Time to write
these values

Ok

Now I can fetch
a fresh copy
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Snooping
(with write-back)
• If CPU 1 wasn’t listening, the ‘dirty bit’ still tells us that the line hasn’t been 

written back to memory

Control ALU

Cache

CPU 0

Memory

Interconnect

Control ALU

Cache

CPU 1

Give me adr. #20!I have changed
adr. #22,

Ok, the line is “dirty”

You’ll have to wait
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The issue with snooping

• Even though it’s easiest to think of that way, snoopy 
coherence protocols don’t actually require a single, 
shared bus
– They just need the ability to make broadcast operations

• We’ve looked at the cost of broadcast operations
– When the interconnect has a large, multi-level structure, their cost 

increases with the number of participants

• Snooping is fast...
– ...but only for numbers that are small enough for efficient broadcast
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Directory

• If we can afford more than 1 additional bit of 
information per cache line, we can make a table
– To record which processors have copies of what memory

• It will need
– an entry for each memory block we want to track

– a few bits to record its state
(exclusive-or-shared, modified, uncached)

– a bit vector with one bit for each processor
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A directory state

Control ALU

Cache

CPU 1

Control ALU

Cache

CPU 0

Control ALU

Cache

CPU 2

Control ALU

Cache

CPU 3

Memory

Block      cpus      state        
[0:7] 0010 Excl.
[8:15] 0000 uncached
[16:23] 1100 Shared
[24:31] 0000 uncached

Directory
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Directory granularity

• As you can see, directory entries for every tiny cache line 
lead to a spectacularly large table
– That’s a directory with ‘full bit vector’ format
– Table size grows as (memory amount) x (nr. of cpus)

• For bigger systems, we can divide memory in bigger chunks
– Directory bit vector now indicates that “one or more out of cpus 0-7 has a 

(modified) copy”
– Those 8 can sort out coherence between themselves, using another 

mechanism
– It is still clear where to send the request when other cpus want something 

from the memory block
– That’s a directory with ‘coarse bit vector’ format
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The directory requires memory

• Some systems allocate a fixed part of general system 
RAM for use as directory
– Hardly noticeable for small/medium scale systems

– Leads to upset customers of large systems, when they discover 
that they can’t allocate all the RAM they purchased

• Other systems require the installation of additional 
memory banks just for the directory
– Customers aren’t upset when the cost is made visible, but systems 

grow more expensive
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A recurring theme

• Moving data takes (much) more time than carrying out 
operations

• The further it has to move, the longer it takes
– Message passing can reach very far, but it’s expensive
– Shared memory at laptop scale looks cheaper, because all the 

memory sits (relatively) close to the cores
– When the shared memory systems grow bigger, they develop the 

same issues with cost and distance

• High performance computing is like real estate business
– It’s all about location, location, and location
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