

1

Cache optimizations: loop tiling & vector operations

Jan.Christian.Meyer@ntnu.no

2

While we are close to the metal

• We started with message passing
– Data travels from process to process

(optionally, from computer to computer)

– O/S and interconnect are invisible, but affect performance

• We’ve gone through threading in two flavors
– Data travels from local memory to local memory
– Caching and instruction selection are invisible, but affect performance

• Before we move on, I’d like to
– demonstrate some kind-of explicit cache manipulation
– demonstrate a little bit of manual instruction selection

3

We need something to compute

• The calculations we’ve been working with so far don’t
make the very best demonstration
– They need too many memory accesses per operation

– More on that later

• General Matrix-Matrix multiplication works well
– “gemm” among its friends

• There are some very fancy algorithms to do this
– We’ll just use the naive one

4

Vector (dot) product
(in case you forgot)

• The product of two vectors is the sum of the products of
their elements
– Row/column notation isn’t really important for a pair of vectors, I’ll just

draw it like this anyway

a0 a1a2a3

b0
b1
b2
b3

* = a0b0 + a1b1 + a2b2 + a3b3

(One pair of vectors produces 1 number)

5

Matrix (dot) product

• When we’ve got two matrices A and B, get the third
one (C) by multiplying all pairs of vectors
– The width of A has to equal the height of B, but we can simplify my

demonstration by just thinking of square matrices today

*

*

=

=

* =

Every result
value comes
from a pair
of vectors

6

The naive procedure

• For NxN matrices A,B,C, this translates into triple-
nested loops:

for (int i=0; i<N; i++)

 for (int j=0; j<N; j++)

 for (int k=0; k<N; k++)

 C(i,j) += A(i,k) * B(k,j);

• The number of elements are O(N2)
• The number of operations are O(N3)
• The same data appear in several different products

7

What happens in cache?

• When the matrices grow big enough, the first cache
lines we load must be evicted before they can be re-
used

Cache

8

What happens in cache?

• When the matrices grow big enough, the first cache
lines we load must be evicted before they can be re-
used

Cache

9

What happens in cache?

• By the end, the first thing we loaded must be
replaced
– That’s a shame, because we’ll need it again in a moment

Cache

Sorry,
we’re full

10

Improving re-use

• For matrices that are small enough to fit entirely in
cache, this is not a problem
– Obviously, because cache space never runs out then

• What can we do?
– The same, naive algorithm works fine for smaller matrices

– If we can express a large matrix product as a sum of smaller ones,
we can use it to greater effect

11

Tiling

• Suppose we just multiply some smaller sub-matrices
to begin with:

• Each element in the end product will only contain
three out of nine products that go into the total
– That’s ok, we can add them later

– Additions don’t care what sequence you add in

* =

12

Tiling, stage 2

• We can move the sub-matrices we’re multiplying in
the same pattern as the single elements

• Now we have six in nine parts out of the results in the
C-matrix tile

* =

13

Tiling, in the end

• When our moving tiles reach the end of the matrices,
the result-matrix tile is complete

• For every product of 3x3 tiles, we’ve used every
value in the tiles as part of 3 different partial products

• This should be great for cache, as long as the tiles fit

* =

14

Let’s try it!

• Today’s code archive contains three matrix multipliers
– dgemm_naive.c (produces a file called ‘correct.dat’)

– dgemm_tiled.c (produces a file called ‘tiled.dat’)

– dgemm_vectorized.c (produces ‘vectorized.dat’)

– The programs time their own execution

– The ‘correct’ file is for comparing the other two results

– They won’t necessarily be binary-identical, but there’s a program
‘compare.c’ which tests them for equality to within 10-12

15

Vector registers

• We’ve talked about how vector registers can hold
more than 1 value at a time

...and apply the same operation to all of them simultaneously

– SIMD execution, if you recall

• Vector registers get a little architecture-specific
– They’re really best left for a compiler to generate

• Compiler vector detection can fail for many reasons
– When it doesn’t vectorize automatically for you, it can be useful to

do by hand

– I’ll demonstrate how to program the Intel vector registers explicitly

16

Intrinsics

• We could do this with direct assembly programming
– It’s error prone and quirky, though

• Because vector instructions can be useful in higher level
languages as well, they’re supported by intrinsics
– Constructs that behave like function calls, but the compiler can recognize as

shorthand notation for assembly instructions

• We’ll only need intrinsics for SSE2 instructions
– Introduced with the Pentium4 instruction set
– There are newer additions, but these have vectors that hold pairs of double

precision floating point values
– That’s enough for demonstration

• Enable with
#include <emmintrin.h>

17

Data types & memory allocation

__mm128d my_variable;
– This is like a declaration, but the type stands for a 128-bit SIMD register,

so it can hold two 64-bit doubles
– It’s not actually a 1-1 mapping with a SIMD register, you can declare more

of these variables than there are registers
– The point is that it’s a blob of bytes which can be put into such a register in

an instant, and fit there

_mm_malloc (size, alignment);
– This is like ‘malloc’, but the ‘alignment’ argument gives a number that

evenly divides the starting address of the allocation
– Vector registers load faster when the addresses they load are clean

multiples of the register size
– Since we have 16-byte (128bit) values, we’ll use 16

18

Load/store operations

• In order to transfer data from memory into a SIMD
register, you can write

__m128d my_two_doubles = _mm_load_pd (&two_doubles);

(provided that the address of ‘two_doubles’ is 16-byte aligned)

You can also load two copies of one double:

__m128d two_copies_of_x = _mm_load_pd1 (&x);

• You can also move data from SIMD registers to memory
_mm_store_pd (my_two_doubles, &two_doubles);

(still assuming aligned addresses)

• These are RISC-style instructions
– Explicit loading and storing, other operations only combine registers

19

Multiplication and addition

• Pairwise addition of two SIMD registers works thus:
__m128d aplusc_and_bplusd = _mm_add_pd (ab, cd);

• Pairwise multiplication is similar
__m128d ac_and_bd = _mm_mul_pd (ab, cd);

• These are the operations we need for dgemm
– There are many more…
– Un-aligned loading and storing is possible (but slower)
– SSE2 can also do 4-long vectors of 32bit floats
– SSE3, AVX, AVX2, AVX512 have extended the op. set
– Consult the intrinsics guide for a full reference:

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

20

Vectorizing 2x2 tiles

• If we write out the 2x2 matrix product
C(0,0) = A(0,0)*B(0,0) + A(0,1)*B(1,0)

C(0,1) = A(0,0)*B(0,1) + A(0,1)*B(1,1)

C(1,0) = A(1,0)*B(0,0) + A(1,1)*B(1,0)

C(1,1) = A(1,0)*B(1,0) + A(1,1)*B(1,1)

we can notice that some terms appear in pairs:
C(0,0) = A(0,0)*B(0,0) + A(0,1)*B(1,0)

C(0,1) = A(0,0)*B(0,1) + A(0,1)*B(1,1)

C(1,0) = A(1,0)*B(0,0) + A(1,1)*B(1,0)

C(1,1) = A(1,0)*B(0,1) + A(1,1)*B(1,1)

21

Vectorizing 2x2 tiles

• The other factors with those pairs are consecutive
C(0,0) = A(0,0)*B(0,0) + A(0,1)*B(1,0)

C(0,1) = A(0,0)*B(0,1) + A(0,1)*B(1,1)

C(1,0) = A(1,0)*B(0,0) + A(1,1)*B(1,0)

C(1,1) = A(1,0)*B(0,1) + A(1,1)*B(1,1)

in other words, we can handle the products with
six 2-vectors:

[A(0,0) A(0,0)] x [B(0,0) B(0,1)]

[A(0,1) A(0,1)] x [B(0,1) B(1,1)]

[A(1,0) A(1,0)] x [B(0,0) B(1,0)]

[A(1,1) A(1,1)] x [B(0,1) B(1,1)]

22

Vectorized dgemm

• The third version of our matrix multiplier uses this
notation in order to further speed up our tiled routine a
little bit

...but only for 2x2 tiles, because we only use 2-length vectors

• Note that while your compiler will usually vectorize a
plain loop like

for (int i=0; i<N; i++)
c[i] += a[i]*b[i];

it doesn’t as easily recognize the vector-potential we
uncovered in the tiling routine
– That’s why I’m showing you it can be done by hand

23

Reality check

• The tiling effect is much more prominent than the vector one
• We only did 1 level of tiling

– As you can probably see, it’s possible to do tiled multiplication within the
tiles as well

– At optimum, we have a tile granularity for each cache level, so that L3-size
tiles are multiplied using L2-size tiles, which are multiplied by L1-size tiles
that can be tiled with vectors

– Too much typing for a 45 minute lecture, though

• Honestly, the easiest way to do it is to use someone else’s
highly tuned library function
– Look into ATLAS, OpenBLAS or MKL if you want to multiply a lot of matrices
– Now we know roughly how they work, though

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

