

Cache optimizations: loop tiling & vector operations

While we are close to the metal

- We started with message passing
 - Data travels from process to process

(optionally, from computer to computer)

- O/S and interconnect are invisible, but affect performance
- We've gone through threading in two flavors
 - Data travels from local memory to local memory
 - Caching and instruction selection are invisible, but affect performance
- Before we move on, I'd like to
 - demonstrate some kind-of explicit cache manipulation
 - demonstrate a little bit of manual instruction selection

We need something to compute

- The calculations we've been working with so far don't make the very best demonstration
 - They need too many memory accesses per operation
 - More on that later
- General Matrix-Matrix multiplication works well
 - "gemm" among its friends
- There are some very fancy algorithms to do this
 - We'll just use the naive one

Vector (dot) product

(in case you forgot)

- The product of two vectors is the sum of the products of their elements
 - Row/column notation isn't really important for a pair of vectors, I'll just draw it like this anyway

$$a0a1a2a3 * \begin{cases} b0 \\ b1 \\ b2 \\ b3 \end{cases} = a0b0 + a1b1 + a2b2 + a3b3$$

(One pair of vectors produces 1 number)

Matrix (dot) product

- When we've got two matrices A and B, get the third one (C) by multiplying all pairs of vectors
 - The width of A has to equal the height of B, but we can simplify my demonstration by just thinking of square matrices today

The naive procedure

 For NxN matrices A,B,C, this translates into triplenested loops:

```
for ( int i=0; i<N; i++ )
for ( int j=0; j<N; j++ )
for ( int k=0; k<N; k++ )
C(i,j) += A(i,k) * B(k,j);
```

- The number of elements are $O(N^2)$
- The number of operations are O(N³)
- The same data appear in several different products

What happens in cache?

 When the matrices grow big enough, the first cache lines we load must be evicted before they can be reused

What happens in cache?

 When the matrices grow big enough, the first cache lines we load must be evicted before they can be reused

What happens in cache?

- By the end, the first thing we loaded must be replaced
 - That's a shame, because we'll need it again in a moment

Improving re-use

- For matrices that are small enough to fit entirely in cache, this is not a problem
 - Obviously, because cache space never runs out then
- What can we do?
 - The same, naive algorithm works fine for smaller matrices
 - If we can express a large matrix product as a sum of smaller ones, we can use it to greater effect

Tiling

11

• Suppose we just multiply some smaller sub-matrices to begin with:

- Each element in the end product will only contain three out of nine products that go into the total
 - That's ok, we can add them later
 - Additions don't care what sequence you add in

Tiling, stage 2

• We can move the sub-matrices we're multiplying in the same pattern as the single elements

					+										
					~					_					

 Now we have six in nine parts out of the results in the C-matrix tile

Tiling, in the end

• When our moving tiles reach the end of the matrices, the result-matrix tile is complete

- For every product of 3x3 tiles, we've used every value in the tiles as part of 3 different partial products
- This should be great for cache, as long as the tiles fit

NTNU – Trondheim Norwegian University of Science and Technology

Let's try it!

- Today's code archive contains three matrix multipliers
 - dgemm_naive.c
 - dgemm_tiled.c
 - dgemm_vectorized.c

(produces a file called 'correct.dat') (produces a file called 'tiled.dat') (produces 'vectorized.dat')

- The programs time their own execution
- The 'correct' file is for comparing the other two results
- They won't necessarily be binary-identical, but there's a program 'compare.c' which tests them for equality to within 10⁻¹²

Vector registers

 We've talked about how vector registers can hold more than 1 value at a time

...and apply the same operation to all of them simultaneously

- SIMD execution, if you recall
- Vector registers get a little architecture-specific
 - They're really best left for a compiler to generate
- Compiler vector detection can fail for many reasons
 - When it doesn't vectorize automatically for you, it can be useful to do by hand
 - I'll demonstrate how to program the Intel vector registers explicitly

Intrinsics

- We *could* do this with direct assembly programming
 - It's error prone and quirky, though
- Because vector instructions can be useful in higher level languages as well, they're supported by *intrinsics*
 - Constructs that behave like function calls, but the compiler can recognize as shorthand notation for assembly instructions
- We'll only need intrinsics for SSE2 instructions
 - Introduced with the Pentium4 instruction set
 - There are newer additions, but these have vectors that hold pairs of double precision floating point values
 - That's enough for demonstration
- Enable with

#include <emmintrin.h>

Data types & memory allocation

```
_mm128d my_variable;
```

- This is like a declaration, but the type stands for a 128-bit SIMD register, so it can hold two 64-bit doubles
- It's not actually a 1-1 mapping with a SIMD register, you can declare more of these variables than there are registers
- The point is that it's a blob of bytes which can be put into such a register in an instant, and fit there

_mm_malloc (size, alignment);

- This is like 'malloc', but the 'alignment' argument gives a number that evenly divides the starting address of the allocation
- Vector registers load faster when the addresses they load are clean multiples of the register size
- Since we have 16-byte (128bit) values, we'll use 16

Load/store operations

 In order to transfer data from memory into a SIMD register, you can write

__m128d my_two_doubles = _mm_load_pd (&two_doubles); (provided that the address of 'two_doubles' is 16-byte aligned) You can also load two copies of one double: __m128d two_copies_of_x = _mm_load_pd1 (&x);

You can also move data from SIMD registers to memory

_mm_store_pd (my_two_doubles, &two_doubles); (still assuming aligned addresses)

- These are RISC-style instructions
 - Explicit loading and storing, other operations only combine registers

Multiplication and addition

- Pairwise addition of two SIMD registers works thus: __m128d aplusc_and_bplusd = _mm_add_pd (ab, cd);
- Pairwise multiplication is similar

 $_m128d ac_and_bd = _mm_mul_pd (ab, cd);$

- These are the operations we need for dgemm
 - There are many more...
 - Un-aligned loading and storing is possible (but slower)
 - SSE2 can also do 4-long vectors of 32bit floats
 - SSE3, AVX, AVX2, AVX512 have extended the op. set
 - Consult the intrinsics guide for a full reference: https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Vectorizing 2x2 tiles

• If we write out the 2x2 matrix product

C(0,0) = A(0,0)*B(0,0) + A(0,1)*B(1,0) C(0,1) = A(0,0)*B(0,1) + A(0,1)*B(1,1) C(1,0) = A(1,0)*B(0,0) + A(1,1)*B(1,0)C(1,1) = A(1,0)*B(1,0) + A(1,1)*B(1,1)

we can notice that some terms appear in pairs:

C(0,0) = A(0,0)*B(0,0) + A(0,1)*B(1,0) C(0,1) = A(0,0)*B(0,1) + A(0,1)*B(1,1) C(1,0) = A(1,0)*B(0,0) + A(1,1)*B(1,0)C(1,1) = A(1,0)*B(0,1) + A(1,1)*B(1,1)

Vectorizing 2x2 tiles

The other factors with those pairs are consecutive

C(0,0) = A(0,0)*B(0,0) + A(0,1)*B(1,0) C(0,1) = A(0,0)*B(0,1) + A(0,1)*B(1,1) C(1,0) = A(1,0)*B(0,0) + A(1,1)*B(1,0)C(1,1) = A(1,0)*B(0,1) + A(1,1)*B(1,1)

in other words, we can handle the products with six 2-vectors:

 $\begin{bmatrix} A(0,0) & A(0,0) \end{bmatrix} \times \begin{bmatrix} B(0,0) & B(0,1) \end{bmatrix} \\ \begin{bmatrix} A(0,1) & A(0,1) \end{bmatrix} \times \begin{bmatrix} B(0,1) & B(1,1) \end{bmatrix} \\ \begin{bmatrix} A(1,0) & A(1,0) \end{bmatrix} \times \begin{bmatrix} B(0,0) & B(1,0) \end{bmatrix} \\ \begin{bmatrix} A(1,1) & A(1,1) \end{bmatrix} \times \begin{bmatrix} B(0,1) & B(1,1) \end{bmatrix}$

Vectorized dgemm

 The third version of our matrix multiplier uses this notation in order to further speed up our tiled routine a little bit

...but only for 2x2 tiles, because we only use 2-length vectors

• Note that while your compiler will usually vectorize a plain loop like

for (int i=0; i<N; i++)

c[i] += a[i]*b[i];

it doesn't as easily recognize the vector-potential we uncovered in the tiling routine

- That's why I'm showing you it can be done by hand

Reality check

- The tiling effect is much more prominent than the vector one
- We only did 1 level of tiling
 - As you can probably see, it's possible to do tiled multiplication within the tiles as well
 - At optimum, we have a tile granularity for each cache level, so that L3-size tiles are multiplied using L2-size tiles, which are multiplied by L1-size tiles that can be tiled with vectors
 - Too much typing for a 45 minute lecture, though
- Honestly, the easiest way to do it is to use someone else's highly tuned library function
 - Look into ATLAS, OpenBLAS or MKL if you want to multiply a lot of matrices
 - Now we know roughly how they work, though

