NTNU - Trondheim
Norwegian University of

Science and Technology

OpenMP: Tasks

LY
www.ntnu.edu > Jan.Christian.Meyer@ntnu.no

A}

Worksharing-style OpenMP

* The way we have been partitioning computational
workloads so far depends strongly on the layout
— We expect to have some large, multidimensional arrays
— Iterations can proceed along each dimension in turn
— The size of the workload is fixed and known when the loops begin

* This is pretty close to optimal for parallel for-loops
— Great for linear algebra
— Great for Fourier transforms
...but not all programs simulate physical phenomena

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Issues with the worksharing view

* Suppose we start a bunch of threads and inside the parallel
region, we have a loop that calls a function with an array of points:
#pragma omp parallel for
for (int i=0; i<N; i+=BLOCK)
do_something (&(data_points]i]), BLOCK);
* How do we deal with parallelism at the receiving end?
void do_something (mytype_t *data_points, int count)

f < Here we have assumed
pragma omp for that the threads are
for (int x=0; x<count; x++) already online
data_points[x] = sqrt(x); /Il ...or whatever

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Issues with the worksharing view

* Suppose we don’t assume that the threads have already
gone live
void do_something (mytype_t *data_points, int count)

{

#pragma omp parallel for
for (int x=0; x<count; x++)
data_points[x] = sqrt(x); /Il ...or whatever

}
* Now we can only call the function from outside of parallel
regions

...and get the stop/start-effect of spawning and joining threads for every block
we transfer

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Nested parallelism

* Nested parallelism is when one work-package spawns more
work-packages that should be distributed among threads

* The worksharing directives aren’t very good at this kind of
thing
— They practically assume that all threads will participate in one big loop-
schedule that is ready when the loop begins

— As we know, this is not 100% necessary
(we can have multiple loops with no-wait clauses in a parallel region)

but it's definitely the default assumption

— Demonstrably clumsy when we want to separate the list of things to do from
the team of threads that do them

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Task-based programming

* This is an alternative view of how to express
parallelism

* The idea is similar to the original thought behind
pthreads:
— Take a block of work and dispatch it for background execution
— Record which blocks of work depend on the other ones

— Assign them to the team of threads in an order that matches their
dependencies

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

From a bird’s eye view

* Task-based programs generate dependency graphs behind
the scenes:

\/\/
/\ o

T8

* This arbitrary example—graph would suggest that

— Tasks T1, T2, T3 can run in parallel

— Outputs from T1,T2 are needed for T4, and outputs from
T2,T3 are needed for T5

. NTNU - Trondheim
— T4, T5 canrunin para”el B Norwegian University of
Science and Technology
— Etc. etc.

LY
www.ntnu.edu ¥

Worksharing directives can be
task graphs too

* Their shape is just very trivial and uninteresting:

/T 11 ‘

T2 T3 T4 T5 T6 T7 /T8 T9

I.e. loop Iiterations are mdependent, and synchronize
when they are finished
NTNU - Trondheim
B Norwegian University of
Science and Technology

www.ntnu.edu

OpenMP tasks

* OpenMP admits the creation of arbitrary dependency graphs
through the task directive

* We can write
#pragma omp task

{

do_some_ stuff();

}
and the block’s context will be whisked away into an internal
gueue somewhere, to be executed at the first opportunity

* If we want to wait for all spawned tasks to be finished, there is
#pragma omp taskwait

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Function calls can be tasks

* This maneuver
#pragma omp task
some_useful function (argl, arg2, arg3);

will take the whole function call to
‘'some_useful function’ and make a background task out
of it

* We can also declare functions to be tasks by definition

#pragma omp task
void some_useful_function (int argl, int arg2, intarg3) { ... }

which will task-ify every call we make to it

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Tasks with and without threads

* You can make tasks out of things without having

started a parallel region
— They'll just be added to a list and run in sequence

* When there is a live team of threads active, they'll
pick up tasks from the task graph in parallel

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

The wonderful part of this

* The body of a task is at liberty to create more tasks

— Their dependencies can be inferred from their arguments and uses
of their return values

— Alternatively, taskwait directives, if you want to be explicit about it

* It’'s not necessary to assume any particular
relationship between the thread count and the

number of tasks

— Tasks-spawning-tasks-spawning-tasks can nest as deeply as you
like, they will all be run in due time

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Impractical application

* Making tasks out of loop iterations serves little
purpose
— As we have demonstrated, you can do it just fine

— There’s even a directive #pragma omp taskloop that automates
making a task out of each iteration in a loop

* It doesn’t work very well with the loops we’ve been

using worksharing directives on:
— This only exposes the same amount of parallelism as we did before

— It comes with the additional overhead of constructing the trivial
taskgraph internally

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Practical application

* Tasks come into their own when you're solving
problems that are impractical to express as loops

* Divide-and-conguer algorithms are a splendid
example

— l.e. problems where the parallelizable work comes out of each
nesting level in a recursive function call:

Make a task out of the first call...

Spawn a couple of smaller tasks at the 2" nesting level...

Make even smaller tasks at the 3™ |evel...

Split them up into more tasks at the 4™ level...
...you get the picture...

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Starting the chain reaction

* With a recursive divide-and-conquer problem, say

void here_we go() {
#pragma omp task
do_the_first_half();
#pragma omp task
do_the second_half();

}

It’s natural to try and write
#pragma omp parallel

{

#pragma omp task
here_we go();

}
e This is a mistake Sl i
— N threads will start N individual task-trees that all do the same thin Selenoamng Tedmoloey

%
www.ntnu.edu ¥

The common pattern

* If you have a recursive tree of function calls that
spawn tasks, the top level tends to look like this

#pragma omp parallel « Prepare some

{ threads to pick
#pragma omp single up the tasks
start_the_circus(); \

J One thread starts

the recursion, it
will soon create
enough parallel
work for everyone

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

Example time

* We need a divide/conqguer type of algorithm

— This is different from our classical HPC number-crunching
applications

* |'ve gone with quicksort

— You have (supposedly) already encountered this method in
Algorithms & Data Structures, but we can repeat it briefly

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

A quick review of guicksort

* Pick a range in an unsorted array of numbers

1 6 3 414 2 7 8 9 1011 1213 5 1516
(This one is only very mildly out of order, in the interest of brevity)
* Choose a pivot number
- Say, 8
e Search from the low end until you find a number >pivot
1 6 3 414 2 7 8 9 1011 1213 5 1516
T A-ha!
* Search from the high end until you find a number <pivot
1 6 3 414 2 7 8 9 1011 1213 5 15’161,..?“:“?
JA A_ha! g Science and Technology

A"
www.ntnu.edu ¥

A quick review of guicksort

* When you have found two suitable numbers, swap
them:

| v
1 6 3 4 5 2 7 8 9 1011 12 13 14 15 16
?

* When your search-pointers pass each other, the array is a
little bit more sorted than it was:

1 6 345 2 7 8 9101112131415 16
A A
|
— One part is an unordered list of <pivot numbers @ S TITT:""I':f
— The other is an unordered list of >pivot numbers

A"
www.ntnu.edu ¥

Divide and conquer

* These two parts can now be passed along for further
guick-sorting:

1 6 3 4 5 2 7 8 9 10 11 12 13 14 15 16

* Each part will have its own beginning and end
...and we’ll pick a new pivot in the range of each of them

* When this process has reached a list length of 1, a
single number is sorted by default

NTNU - Trondheim
Norwegian University of
Science and Technology

A"
www.ntnu.edu ¥

Choosing pivots

* The algorithm behaves a little bit differently
depending on how you choose the pivot
— I've gone with the MOT (median-of-three) approach:
Compare the first, last, and middle elements, and use the median
* There are a few different ways to manipulate memory
as well

— The example implementation sorts in-place, i.e. it overwrites the un-
sorted array with its sorted equivalent

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Choosing programming languages

* Today’s example is written in C++

— Sorry about that

— The reason is that | wrote it in order to compare OpenMP with
another task-friendly programming model that only exists for C++

* Hopefully, you can read it anyway

— It's not doing anything super object-oriented, functional, or any
meta-programming, so it’s pretty C-like after all

— If you feel it is unfair of me to swap languages mid-semester, just
tell me, and | will happily translate it into plain C

— It's not a lot of work, I’'m just not eager to rewrite things unless |
know they will be useful to someone

NTNU - Trondheim
Norwegian University of

Science and Technology

A"
www.ntnu.edu ¥

A small disclaimer

* OpenMP implementations differ from compiler to
compiler

| get speedup out of this implementation with GCC/g++
| don’t get speedup out of it with LLVM/clang++

This isn’t necessarily universally true, I’'m just mentioning it

If you're on MacOS, the ‘gcc’ package may have installed a version of
clang masquerading under the name gcc

Call it with ‘--version’ if you're uncertain, and see what it answers

Don’t ask me why the responsible package-manager people have
chosen to do this, because | don’t understand it

NTNU - Trondheim
Norwegian University of

Science and Technology

(If you understand it, I'd love to hear what the reason is)

A"
www.ntnu.edu ¥

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

