

1

Roofline analysis

Jan.Christian.Meyer@ntnu.no

2

Way back in the beginning...

• We started the semester with talking about the von
Neumann computer

• I called it a processing model
• It’s a model because it’s a simplified way of thinking

about what’s happening
– It omits myriads of practical details that affect actual processors

– We can still think about them in terms of the model

– It is close enough to the truth that it lets us predict things correctly

“All models are wrong, but some are useful.”
- George E. P. Box

3

The most abstract model

If you have people who do the programming for you,
this can be a sufficiently detailed view...

4

Breaking it down

• When we do the programming, some additional detail
is necessary

Problem model

Programming model

Processing model

Actual computer

What we want to calculate:
simplified representation of a real thing

The operations we use to express the calculation:
simplified representation of machine instructions

Our expectations about what the machine will do:
simplified representation of hardware

Constellation of assorted metals and plastics:
the part you can kick

(This 4-layered view is adapted from “Scalable Programming Models for Massively Multicore Processors”,
M. D. McCool, Proceedings of the IEEE, Vol 96, Issue 5)

5

TDT4200 in context

• This part is what we’ve spent almost all of our time on

– It’s a worthwhile topic, we can’t write any programs otherwise
– We need some ideas about the other 3 as well, in order

to explain why the programs run as fast as they do

Problem model

Programming model

Processing model

Actual computer

What we want to calculate:
simplified representation of a real thing

The operations we use to express the calculation:
simplified representation of machine instructions

Our expectations about what the machine will do:
simplified representation of hardware

Constellation of assorted metals and plastics:
the part you can kick

6

Other models:

Speedup & scaled speedup
• Amdahl’s and Gustafson’s laws are very abstract

– They ignore the fact that hardly any program can split its parallel
work into however many parts we want

– They don’t precisely predict run times we can measure: in practice,
it’s almost impossible to run the same program at exactly the same
speed two times in a row

• They still model something useful
– We get realistic estimates of whether or not program performance

will improve if we buy more hardware to run it on

(...so these are performance models)

7

Other models:

Hockney’s communication model

• This one is pretty simplified too
– It ignores the fact that message latency is affected by the

communication library call, the operating system, the
microcontroller in the network interface, the condition of the network
cable, etc. etc.

– It also ignores the fact that messages are sharing the network
capacity with every other program that communicates via the same
wires

• It still models something useful
– We can tell whether program performance is constrained by the

size of its messages or by how many they are

8

The inventory so far

• We’ve got performance models for how many
processors to involve at a time

• We’ve got a performance model for how much time
they’ll spend talking to each other

• We don’t have one for how well the processors
perform while working on their local problem parts
– We’ve just been recording it with a clock

9

Processor benchmarking

• This is a bit of a spectator sport
– Hardware vendors compete for the highest numbers because it

brings customers

– Measurements are made with strictly regulated version numbers of
strictly regulated benchmark programs under strictly regulated
runtime conditions, so that results can be compared

– Magazines, web sites, and private home enthusiasts publish tables
of measurements, make comparisons, argue about the methods
used to obtain them, etc. etc.

– It’s also an important part of the bidding and approval process when
you’re purchasing a machine with a specific performance target

10

Popular processor metrics

• Since olden times, people have compared “MIPS”
– “Millions of Instructions Per Second”, ostensibly

– Also known as “Meaningless Indicator of Processing Speed”, because different instructions
(obviously) are not interchangeable

– FLOPS (floating-point operations per second) are similarly popular, and slightly more homogeneous

• Throughout the clock race, people compared clock frequencies
– It’s very easy to compare GHz (or MHz) if we assume that all program speeds are proportional to

the clock rate

– Of course, they aren’t really…

• For some time after 2005(ish), people have been counting cores
– Regardless of how well their programs utilize them

• Recently, we’ve had to contend with different types of cores on the same chip
– “Performance” vs. “efficiency” variants

– Both of those are easy to count, too

11

The issue with benchmarks

• No matter which way you spin it, you’re only really
measuring the speed of the benchmark program
– We try to make benchmarks that are representative for bigger

classes of program types

– That’s very difficult, and not entirely accurate

• In order to estimate how fast your particular program
can run on a given computer, it’s helpful to analyze
what kind of work the code does most of
– That’s where we are going with this

12

Data movement and operations
(again)

• As we have already noted several times, it can be useful to
divide a program’s work into
– The parts that move numbers in and out of the processor (data movement)

– The parts that combine numbers already in the processor (operations)

• Any given computer has some different costs for these

• We can choose what kind of operations to talk about, based on
what the program is supposed to do
– I’ll talk in terms of FLOPS, because programs that do a lot of them tend to

be performance-critical
(...we have little use for performance-tuned text editors…)

– There are performance-sensitive applications with different instruction mixes as well,
you can adapt our discussion to those if you want/need to

13

We can draw a graph

• Let us make our performance metric the unit of the vertical axis

• Assuming that we just do a bunch of operations on registers (and
don’t move any data), a computer has a peak computing rate

FLOP
 s

Peak performance

14

Data movement capacity

• The interconnect can maximally support shifting
some number of bytes between CPU and memory
each second
– That’s the memory bandwidth

– Just like network bandwidth, in miniature

– Measured in [bytes / s]

15

Operational intensity

• Most instructions need some operands
– We can sort out how many bytes those require

• All programs are composed from these instructions:
– Read some number of bytes
– Apply some operations to them
– Write some number of bytes

• If we divide the number of ops by the number of bytes
they are applied to, we get operational intensity
– Measured in [operations / byte]
– Also called arithmetic intensity when the program is full of arithmetic

16

The memory wall

• If the data transport is not fast enough to supply the
processor with data for all the instructions in the
program, we just have to wait for it to get there

• The operational intensity times the memory
bandwidth becomes a performance figure

[byte / s] x [FLOP / byte] = [FLOP / s]

• This is as fast as the program can run because of the
rate it can read and write at

17

Back to the graph

• If we make arithmetic intensity the unit of our x-axis, the
machine’s memory bandwidth gives the gradient of a straight
line that relates them in our diagram:

FLOP
 s

Peak performance

byte/s x FLOP/byte
P

I FLOP
 byte

18

Roofline models

• The shape of this figure is determined by the maximal performance of a given
computer

• It’s a ‘roofline’ in the sense that performance can’t exceed the computer’s two
maximum-capacities (memory bandwidth or peak operations rate)

FLOP
 s P

I FLOP
 byte

19

We have two main regions

• Programs with intensity in the orange region will run at a speed capped by
memory bandwidth

• Programs with intensity in the green region will run at a speed capped by the
processor

FLOP
 s P

I FLOP
 byte

“compute bound”
“memory
 bound”

“ridge point”

20

How to find the arithmetic intensity?

• Read the code
– A rough estimate can already be quite informative

• Here’s the calculation from the advection example:

– We’ve got 9 operands that are 8-byte floating point numbers, so that’s 72
bytes

(I only counted those that are liable to be loaded all the time, the others are
likely to stay in cache after 1 initial load)

– We’ve got 17 operations that are carried out every iteration
– That’s an intensity of approximately 0.236

U_next(i,j) = 0.25 * (U(i-1,j) + U(i+1,j) + U(i,j-1) + U(i,j+1))
 - vy * (dt/(2.0*dx)) * (U(i+1,j) - U(i-1,j))
 - vx * (dt/(2.0*dx)) * (U(i,j+1) - U(i,j-1));

21

What does this tell us?

• Here’s a roofline chart I made for a 36-core Dell
PE730 server:

→ The program will run at the speed of memory

The advection kernel is around here

22

How do we get the roofline?

• You can choose:
– Theoretical numbers can be found in the data sheets of the

hardware, but those are usually higher than you will ever see in
practice

– Empirical numbers can be found by running benchmarks that are
known to specifically stress computing capability or memory,
respectively

• I made the previous graph from timing
– A dgemm multiplication with huge matrices (and optimized library)

– A memory bandwidth benchmark called STREAM

23

It’s not an exact science

• We could have instrumented the program and obtained a more
precise arithmetic intensity
– It’s more work, though
– As you can see, our approximation would have to be pretty bad before the result

would change meaningfully

• We could have counted all the variables and constants in the
expression
– The intensity-number would have changed both value and meaning a little, I told you

why I omitted them from this particular estimate

• There isn’t a single, 100% correct way to do it
– If you want to put graphs like that in reports, documents, papers, etc., just make sure

that you include a description of how you got your numbers, and the reader will be
able to tell what they mean

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

