

1

Application types

Jan.Christian.Meyer@ntnu.no

2

Recent history

• Parallel computing went mainstream in 2003
– A broad panel of researchers held a series of meetings from 2004

through 2006, to figure out what to do about it

• Their final report deservedly received a lot of attention
“The Landscape of Parallel Computing Research: A View from Berkeley”,

K. Asanovic et al., Dec. 2006

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

• We have actually been repeating several of its points
throughout the semester

They have been commonly accepted since their publication

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

3

My favorite part

• The whole report covers a lot of ground
• In my opinion, one of the highlights is a section that

pinpoints computational problems that occur frequently
– We’ve solved the advection equation in the auditorium
– You’ve solved the diffusion equation as homework
– Hopefully, you’ve noticed that they belong to a class of programs that have

many technical challenges in common

• We have a number of matching problem classes, with their
own performance characteristics
– It’s impossible to make an exhaustive and eternally complete list, but it’s

very useful to have an approximate attempt

4

The seven dwarves of Berkeley

• The Berkeley panel arrived at 7 different computation-classes
they felt were most important:
– Dense linear algebra
– Sparse linear algebra
– Structured grids
– Unstructured grids
– N-body problems
– Monte Carlo methods
– Spectral methods

• It’s “seven” because that’s how many there are (and it evokes associations
with a fairy tale that is easy to remember)

• It’s “dwarves” because they refer to miniature versions of larger problems

5

Simplified representations
(aka. “proxy applications”, “mini-apps”, “kernels”...)

• No useful program only does one of those seven things

• When a program does one of them, however, that is probably
going to be the most time-consuming thing it does

• If it does several of them, it will perform differently while it is
working on each of its stages

• The Big Idea:
– If we can parallelize an example of e.g. dwarf #3 on computer X, we will

know that similar applications can be adapted equally well for computer X
– When you’re evaluating whether or not to invest in a new machine, it is

much faster/easier to try out a performance proxy than to rewrite a full
application

6

Dense linear algebra

• We’ve touched upon this one, in the matrix
multiplication examples

• Key ingredient:
– Two or more matrices/vectors full of numbers that are mostly

different from zero

– Some kind of operator you want to combine them with

⊕ =

Matrices

Operator

7

Dense linear algebra
Characteristics

• This type of computation packs long arrays of
consecutive values tightly together in memory

• The operator often consists of somewhat complicated
calculations that require many instructions per
element

Consequently,
– Cache utilization is of great importance to speed

– Data structures are 1D and 2D contiguous arrays

8

Dense linear algebra
Origins

• When you solve Ax = b for a dense matrix A and vectors
x, b, every value in x contributes to every value in b

• This sort of thing appears when the elements of x
represent a set of things that all affect each other
directly

• Some use cases
– Quantum mechanics (physics of very small things)

– Homogeneous systems of linear equations (Eigenvalue problems)

– Data analytics (dimensionality reduction)

111111
111111
111111
111111
111111
111111

GraphAdjacency

9

Sparse linear algebra

• This is the same kind of problem as its dense cousin,
we’re combining matrices and vectors

• The difference is that many/most of the matrix
elements are equal to zero

• This makes it meaningless to read and write them

⊕ =

Matrices

Operator

(The illustration isn’t very sparse,
 but bigger matrices tend to
 bring out the effect)

10

Sparse linear algebra
Data structures

• Since we only need a small subset of the (i,j) indices
in each matrix, the data structure turns into a list of
indices with non-zero values instead of reserving a
memory location per element
– Simple, popular format: CSR (Compressed Sparse Row)

1

4
2

5

3

Values: [1,2,3,4,5]

Rows: [0,1,3,4]

The elements

Start of each row
in the element list

Cols: [0,1,3,1,2] Col. of each number
in the element list

(Swap the roles of rows/cols to obtain CSC format)

11

Sparse linear algebra
Characteristics

• Two levels of indirection for every access
– You have to look up indices in lists before you can get to the

element that they index

– The memory access pattern is semi-unpredictable
• In general, it depends on patterns found in arbitrary matrices
• If you know something about the patterns in your matrices before you

start, you can customize the indexing mechanism for them

• Operations tend to have less exploitable work per
element
– Applications often become memory-bound

12

Sparse linear algebra
Origins

• When you solve Ax = b for a sparse matrix A and vectors
x, b, only a few values in x contribute to a few values in b

• We get this if we split the geometry of a physical thing into
sub-things where near neighbors affect each other, and
remote parts don’t

• Some use cases:
– Fluid dynamics, mechanical engineering, climate simulations, … (physics of

everyday-size things)

– Inhomogeneous systems of linear equations (implicit time-integration)

– Search engines, social networks, machine learning...

111000
111110
111010
010111
011111
000111

GraphAdjacency

13

Structured grids

• This is what we’ve been doing with the advection equation,
and in the problem sets
– Divide the problem into equally-sized and equally-shaped pieces
– Near neighbor points affect each other

• Data structures become 2D, 3D, 4D, … arrays
– You can look at this as a special case of sparse lin. alg.
– The matrix pattern becomes so regular that we don’t even have to represent

the matrix in memory, and just connect neighbor elements directly in the code
– Application areas are similar/same as with sparse lin. alg.
– Performance characteristics are also similar (mostly memory-bound problems)
– Main difference: no indirect indexing, so we avoid the extra lookup cost

110100000
111010000
011101000
101110100
010111010
001011101
000101110
000010111
000001011
Adjacency Graph

14

Unstructured grids

• These are like the structured grids, but without the
assumption that neighbors are evenly spaced
– If all the sub-parts have the same shape, however, it’s still not

necessary to explicitly represent any matrices in the code

• Data structures depend on the shape of elements
– Using triangles, we get lists of points + lists of 2 neighbors / vertex

– Using hexagons, we get lists of points + lists of 3 neighbors / vertex

– ...and so on… data structures must be adapted to problem
geometry, but they become regular

GraphAdjacency

<matrix redacted>
BUT
typically, same
number of entries
in every row

Point
1
2
3
4
...

Neighbors
2,3
1,4
1,2
1,5
...

...

15

N-body problems

• Problems consist of a list of coordinates for things that
push each other around
– The bodies can be atoms, stars, planets, raindrops, billiard balls…
– Their coordinates change frequently

• Bottleneck: finding neighbors
– If every body can affect every other, we get N*(N-1) / 2 pairs
– If only nearby bodies can affect each other we get a search problem

instead, because their neighbor-relations change often

• The performance challenge:
– Invent data structures that sort nearby bodies into nearby memory quickly

(often using some details that come from what the bodies represent)

16

Monte Carlo methods

• Monte Carlo methods are calculations that approach
their solution by accumulating random numbers
– Since we’ve already been doing this masterclass in Pi estimation,

we can make one more approximation :)

• Imagine a perfectly circular dartboard (radius 1),
inscribed in a square (2x2):

Area = 4

Area = 3.1415926...

17

Monte Carlo methods

• Throw a bunch of darts at it, randomly:

• Some will hit and some will miss, but each additional
point brings the ratio of hits to darts closer to Pi / 4:

• The trick is to formulate the problem in such a way that
additional numbers contribute to the solution no matter what
their values are

18

Monte Carlo methods
Characteristics

• MC methods are arguably embarrasingly parallel
– The outcome of each dart-toss is independent of every other

– Hooray, this will be super-parallel!

• Performance challenges:
– Most pseudo-random number generators have a sequential

dependence between one random number and the next

– When pseudo-random isn’t good enough, true random number
generators rely on harvesting noise from some slow, physical process

– Even when individual samples are independent, accumulating
statistics introduces a need for shared/locked locations to store the
overall statistic in

19

Spectral methods

• Most popularly, these employ Fast Fourier Transforms (FFTs)
– A couple of other transforms are available, notably Laplace and Wavelet

• We don’t have time to discuss these in detail

• We can do a (very) simplified summary from a parallel
computing point of view, though

• Our familiar difference/volume/element methods develop values
in neighbor points through combining them incrementally:

Synchronization (barriers)

20

Spectral methods

• Transform calculations start by obtaining point-wise functions
after looking at the state of the whole problem

• These functions can be developed independently

• Finally, you need the whole problem again in order to reverse
the transformation

Total exchange Total exchangeParallel work

21

In summary

• Those were some super-quick walkthroughs of the
original Berkeley kernels
– Hopefully, enough to give you an idea about how each presents

different challenges to effective parallel solutions

• Since 2006, people have come up with many more
classes & representative problems
– These are enough to start on an overview, though

– I’m mostly trying to make the argument that it’s valuable to look for
familiar patterns in parallel programs that do completely different
things

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

