

Application types

Recent history

- Parallel computing went mainstream in 2003
	- A broad panel of researchers held a series of meetings from 2004 through 2006, to figure out what to do about it
- Their final report deservedly received a lot of attention *"The Landscape of Parallel Computing Research: A View from Berkeley"***,** K. Asanovic *et al.,* Dec. 2006 <https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf>
- We have actually been repeating several of its points throughout the semester

They have been commonly accepted since their publication

My favorite part

- The whole report covers *a lot* of ground
- In my opinion, one of the highlights is a section that pinpoints computational problems that occur frequently
	- We've solved the advection equation in the auditorium
	- You've solved the diffusion equation as homework
	- Hopefully, you've noticed that they belong to a class of programs that have many technical challenges in common
- We have a number of matching problem classes, with their own performance characteristics
	- It's impossible to make an exhaustive and eternally complete list, but it's very useful to have an approximate attempt

The seven dwarves of Berkeley

- The Berkeley panel arrived at 7 different computation-classes they felt were most important:
	- Dense linear algebra
	- Sparse linear algebra
	- Structured grids
	- Unstructured grids
	- N-body problems
	- Monte Carlo methods
	- Spectral methods
- It's "seven" because that's how many there are (and it evokes associations with a fairy tale that is easy to remember)
- It's "dwarves" because they refer to miniature versions of larger problems

Simplified representations

(*aka.* "proxy applications", "mini-apps", "kernels"...)

- No useful program *only* does one of those seven things
- When a program does *one* of them, however, that is probably going to be the most time-consuming thing it does
- If it does *several* of them, it will perform differently while it is working on each of its stages
- The Big Idea:
	- If we can parallelize an example of *e.g.* dwarf #3 on computer X, we will know that similar applications can be adapted equally well for computer X
	- When you're evaluating whether or not to invest in a new machine, it is much faster/easier to try out a performance proxy than to rewrite a full application

5

Dense linear algebra

- We've touched upon this one, in the matrix multiplication examples
- Key ingredient:
	- Two or more matrices/vectors full of numbers that are mostly different from zero
	- Some kind of operator you want to combine them with

Dense linear algebra

Characteristics

- This type of computation packs long arrays of consecutive values tightly together in memory
- The operator often consists of somewhat complicated calculations that require many instructions per element

Consequently,

- Cache utilization is of great importance to speed
- Data structures are 1D and 2D contiguous arrays

Dense linear algebra **Origins**

- When you solve $Ax = b$ for a dense matrix A and vectors *x*, *b,* every value in *x* contributes to every value in *b*
- This sort of thing appears when the elements of x represent a set of things that all affect each other directly
- Some use cases
	- Quantum mechanics (physics of very small things)
	- Homogeneous systems of linear equations (Eigenvalue problems)
	- Data analytics (dimensionality reduction)

Sparse linear algebra

- This is the same kind of problem as its dense cousin, we're combining matrices and vectors
- The difference is that many/most of the matrix elements are equal to zero
- This makes it meaningless to read and write them

(The illustration isn't *very* sparse, but bigger matrices tend to bring out the effect)

NTNU – Trondheim Norwegian University of Science and Technology

Sparse linear algebra

Data structures

- Since we only need a small subset of the (i,j) indices in each matrix, the data structure turns into a list of indices with non-zero values instead of reserving a memory location per element
	- Simple, popular format: CSR (Compressed Sparse Row)

NTNU – Trondheim Norwegian University of **Science and Technology**

(Swap the roles of rows/cols to obtain CSC format)

Sparse linear algebra

Characteristics

- Two levels of indirection for every access
	- You have to look up indices in lists before you can get to the element that they index
	- The memory access pattern is semi-unpredictable
		- In general, it depends on patterns found in arbitrary matrices
		- If you know something about the patterns in your matrices before you start, you can customize the indexing mechanism for them
- Operations tend to have less exploitable work per element
	- Applications often become memory-bound

Sparse linear algebra **Origins**

- When you solve $Ax = b$ for a sparse matrix A and vectors *x*, *b,* only a few values in *x* contribute to a few values in *b*
- We get this if we split the geometry of a physical thing into sub-things where near neighbors affect each other, and remote parts don't
- Some use cases:
	- Fluid dynamics, mechanical engineering, climate simulations, … (physics of everyday-size things)
	- Inhomogeneous systems of linear equations (implicit time-integration)
	- Search engines, social networks, machine learning...

Adjacency Graph

110**1**00000 **111**0**1**0000 0**111**0**1**000 **1**0**111**0**1**00 0**1**0**111**0**1**0 00**1**0**111**0**1** 000**1**0**111**0 0000**1**0**111** 00000**1**0**11** Adjacency Graph

Structured grids

- This is what we've been doing with the advection equation, and in the problem sets
	- Divide the problem into equally-sized and equally-shaped pieces
	- Near neighbor points affect each other
- Data structures become 2D, 3D, 4D, … arrays
	- You can look at this as a special case of sparse lin. alg.
	- The matrix pattern becomes so regular that we don't even have to represent the matrix in memory, and just connect neighbor elements directly in the code
	- Application areas are similar/same as with sparse lin. alg.
	- Performance characteristics are also similar (mostly memory-bound problems)
	- Main difference: no indirect indexing, so we avoid the extra lookup cost

Unstructured grids

<matrix redacted> BUT typically, same number of entries in every row

Adjacency Graph

- These are like the structured grids, but without the assumption that neighbors are evenly spaced
	- If all the sub-parts have the same shape, however, it's still not necessary to explicitly represent any matrices in the code
- Data structures depend on the shape of elements
	- Using triangles, we get lists of points + lists of 2 neighbors / vertex
	- Using hexagons, we get lists of points + lists of 3 neighbors / vertex
	- ...and so on... data structures must be adapted to problem geometry, but they become regular

N-body problems

- Problems consist of a list of coordinates for things that push each other around
	- The bodies can be atoms, stars, planets, raindrops, billiard balls…
	- Their coordinates change frequently
- Bottleneck: finding neighbors
	- $-$ If every body can affect every other, we get $N^*(N-1)$ / 2 pairs
	- If only nearby bodies can affect each other we get a search problem instead, because their neighbor-relations change often
- The performance challenge:
	- Invent data structures that sort nearby bodies into nearby memory quickly (often using some details that come from what the bodies represent)

Monte Carlo methods

- Monte Carlo methods are calculations that approach their solution by accumulating random numbers
	- Since we've already been doing this masterclass in Pi estimation, we can make one more approximation :)
- Imagine a perfectly circular dartboard (radius 1), inscribed in a square (2x2):

Monte Carlo methods

• Throw a bunch of darts at it, randomly:

• Some will hit and some will miss, but each additional point brings the ratio of hits to darts closer to Pi / 4:

The trick is to formulate the problem in such a way that additional numbers contribute to the solution no matter what their values are

Monte Carlo methods **Characteristics**

• MC methods are arguably *embarrasingly parallel*

- The outcome of each dart-toss is independent of every other
- *Hooray,* this will be super-parallel!
- Performance challenges:
	- Most pseudo-random number generators have a sequential dependence between one random number and the next
	- When pseudo-random isn't good enough, *true* random number generators rely on harvesting noise from some slow, physical process
	- Even when individual samples are independent, accumulating statistics introduces a need for shared/locked locations to store the overall statistic in

Spectral methods

- Most popularly, these employ Fast Fourier Transforms (FFTs) – A couple of other transforms are available, notably Laplace and Wavelet
- We don't have time to discuss these in detail
- We can do a (very) simplified summary from a parallel computing point of view, though
- Our familiar difference/volume/element methods develop values in neighbor points through combining them incrementally:

Spectral methods

• Transform calculations start by obtaining point-wise functions after looking at the state of the whole problem

These functions can be developed independently

Finally, you need the whole problem again in order to reverse the transformation

In summary

- Those were some super-quick walkthroughs of the original Berkeley kernels
	- Hopefully, enough to give you an idea about how each presents different challenges to effective parallel solutions
- Since 2006, people have come up with many more classes & representative problems
	- These are enough to start on an overview, though
	- I'm mostly trying to make the argument that it's valuable to look for familiar patterns in parallel programs that do completely different things

