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I wanted to say a few things...

• ...but the opportunity never arose.
• I’m saying them today, we’ll talk briefly about

– Simultaneous MultiThreading (SMT)

– Superlinear speedup

– Load balancing

– Hybrid programming
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Decoding multiple instructions

• We started out with von Neumann machines, and 
modern modifications to them
– Back in lecture #4, we were talking about automatic exploitation of 

instruction-level parallelism

– Specifically, with multiple instructions on their way through a 
pipeline, we can detect whether they are independent (or not)

– When they are, they can (in principle) be run simultaneously

add A,B add C,D add A,B add C,D add A,B add C,D...

DecodeALUInstruction
stream

Add C,D

Do this first(Hey!)

Possibly parallel, but ALU is busy
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Superscalar processors

• If we replicate the unit that adds numbers, we can 
extend the decoder logic to dispatch several 
(independent) instructions simultaneously

• We called it multiple issue

add A,B add C,D add A,B add C,D add A,B add C,D...

DecodeALUInstruction
stream

Add C,D

ALU
Add A,B



  

5

There’s even more:

Register renaming
• With a window of several instructions, we can also detect whether 

use of the same registers is a true data dependence, or if it’s “just” a 
name dependence
– When it’s a name dependence, it could be resolved by a machine with 

more registers
– Many superscalar designs feature duplicated registers, but only expose 

one set in the instruction set / assembly language
– The remaining renaming registers are used for multiple issue

add A,B add A,B add A,B add A,B add A,B add A,B...

DecodeALUInstruction
stream

Add A2,B2

ALU
Add A1,B1
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Inside the ALU

• Different instructions trigger different components to do 
different things
– Adding (e.g.) a pair of memory addresses requires one part of the unit
– Adding (e.g.) some numbers with decimals requires another, because 

different bits of the representation have to be flipped
– Comparisons, jump instructions, etc. use yet another part, with 

separate registers

Integer
unit

Status
registers

FP
unit

Add 1,42 

Integer
unit

Status
registers

FP
unit

Add 1.0, 2.14 

Integer
unit

Status
registers

FP
unit

Compare 1,2

In a sequential run, there is some unused capacity here
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The under-utilization issue

• Only one part of the ALU is active at a time
– Can we fill it up with simultaneous instructions?

• In principle: Yes!
– Just map multiple-issue instructions that use different parts of it to 

the same ALU

• In practice: Not Really
– Sequences of instructions that contain a balanced mix of integer, 

FP and control operations don’t appear often in programs

– How often do you write programs where every 3rd statement does 
something entirely unrelated to the previous 2?

– We actively discourage people from interleaving unrelated code in 
their programs, it’s terrible to read and understand
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Threads to the rescue!

• Two independent control flows can easily contain 
entirely unrelated instructions at the same time:

FPINT C

Required unit

FPINT C

FPINT C

FPINT C

FPINT C

FPINT C

FPINT C

FPINT C

FPINT C

Required unit

FPINT C

FPINT C

FPINT C

FPINT C

FPINT C

FPINT C

FPINT C

Thread 1 Thread 2

(For example:
If this instruction
mix is in a loop,
two copies can
be at different
stages)
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When the stars align

• When control flows with complementary requirements line 
up in time, they can be served by the same hardware:

INT C

Required unit

INT C

FPINT

FPINT

FP C

FP C

FP C

FP C

FP

FP

C

C

INT

INT

INT

INT

Thread 1 & Thread 2
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Simultaneous MultiThreading (SMT)

• In an otherwise superscalar processor, it is a 
(relatively) minor extension to support this fortunate 
coincidence
– Replicate instruction pointer / decoding unit

– Pretend to be 2 processors, and receive 2 instruction streams

– Merge them together when their needs don’t conflict

• If your CPU says it has 4 cores but supports 8 
threads, this is what it’s doing
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SMT exploits happy coincidences

• The actually simultaneous part only happens when the 
instruction streams interleave without conflict

• When threads 1 and 2 both need the integer unit 
simultaneously, one of them has to wait

(and we’re back to sequential interleaving)

• Statistically speaking, independent threads coincide every 
so often and make utilization a little better
– If you have two threads that e.g. both constantly need the integer unit, 

however, they won’t speed up when scheduled on the same physical core

• It is very difficult to plan for your program to utilize this type 
of parallelism
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Superlinear Speedup

• Amdahl’s law tells us that
– The run time of a program has a fraction f that can’t be parallelized

– Even if f could be 0, the speedup would only be S(p) = p at best

• The assumption is that we have a fixed-size problem, 
and increase p
– In other words, the scalability-experiment we’re talking about here 

is carried out in the strong scaling mode

– That’s when Amdahl’s law applies

• Sometimes, we can still measure S(p) > p
– What is going on?
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Split the problem

• Since we know about the memory hierarchy, we can 
illustrate a 2-way splitting of a constant problem size 
like this:

Cache

CPU

RAM
Problem

size

Cache

CPU #0

RAM

Cache

CPU #1

RAM Sub-problem
size

Sub-problem
size

Parallelize!

Hopefully, almost 2x fasterSequential time
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Split the problem again

• Remember, we’re not changing the global problem size:

Cache

CPU #0

RAM

Cache

CPU #1

RAM Sub-problem
size

Sub-problem
size

Cache

CPU #0

Cache

CPU #1

Cache

CPU #2

Cache

CPU #3

Cache

CPU #0

Cache

CPU #1

Sub-problem
size

Sub-problem
size

Sub-problem
size

Sub-problem
size

Parallelize
more!

Hopefully, almost 2x faster
than sequential ...almost 4x faster…?
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When the magic happens
• At some point, we have split the problem into small 

enough parts that each fits in a faster class of memory
• This will give you speedup figures of S(p) > p

Cache

CPU #0

Cache

CPU #1

Cache

CPU #2

Cache

CPU #3

Cache

CPU #0

Cache

CPU #1

Sub-problem
size

Sub-problem
size

Sub-problem
size

Sub-problem
size

MORE than 4x faster!

Cache

CPU #0

Cache

CPU #1

Cache

CPU #2

Cache

CPU #3

Cache

CPU #0

Cache

CPU #1

Sub-problem
size

Sub-problem
size

Sub-problem
size

Sub-problem
size

...almost 4x faster…?
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Load Balancing

• We’ve seen how parallel computations often lead to periodic 
synchronization points

• It works best when every participant has exactly the same 
amount of work
– That way, nobody has to wait for long at a barrier

• It gets worse when the work is unevenly distributed
– The collective can’t go faster than its slowest participant
– When 1 process is late, P-1 processes are wasting time

• In a way, a little imbalance is unavoidable
– Some process will always be the last to reach a synch. point, but we try to 

make it almost simultaneous
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Load balancing in 3 flavors

Roughly speaking, there are 3 kinds of strategies to 
mitigate an unbalanced workload:

• Static
– Embed the partitioning of the problem directly into the source code

(this is what we’ve done in the problem sets, I won’t illustrate it now)

• Semi-static
– Examine the workload when the program starts, divide it then, and run with 

the initial partitioning until finished

• Dynamic
– Adapt to the workload by shifting work around between participants while 

the program is running
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Semi-static technique:

Recursive orthogonal bisection
• Suppose we have domains with irregular shapes

– These images are extracted from map data

– There is fluid motion to compute in the water (bright sections)

– There is nothing to do on land (dark sections)

Trondheimsfjord1 Mehamn2

[1] “Performance Modeling of Finite Difference Shallow Water Equation Solvers with Variable Domain Geometry”, 
Richard Bachmann, NTNUOpen 2021

[2] “Performance Modeling of a Finite Volume Method for the Shallow Water Equations”,
Jenny Veronika Ip Manne, NTNUOpen 2022
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Recursive orthogonal bisection
• With a static Cartesian split, we get uneven 

workloads
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Recursive orthogonal bisection
• Recursive orthogonal bisection starts by scanning 

along one axis, and finding the 50% mark of cells that 
have actual work in them
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Recursive orthogonal bisection
• Next, it changes directions and finds 50% marks in 

the two parts from the previous step
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Recursive orthogonal bisection
• The procedure repeats until we have enough parts to 

parallelize for the machine we want to use
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Recursive orthogonal bisection
• The sub-domains get trickier to do border exchanges 

with, but they end up containing about the same 
amount of work

(Disclaimer: both of the referenced theses solve their load balancing problems
 using other techniques, but recursive orthogonal bisection is a good place to start)
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Dynamic technique:

Master/worker pattern

• We touched upon this with the OpenMP schedules

• Nominate one rank/thread/whatever to be the master
– This one maintains a queue of similar-sized tasks

• The rest of the ranks/threads/whatevers are workers
– The master assigns them tasks

or
– They take tasks from the queue, and inform the master

• Pro: simple to understand
– This is a very popular design in transaction-serving systems

• Con: centralized control = limited scalability
– You can always imagine a number of workers that is large enough to overwhelm the 

master with requests for work
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Dynamic technique:

Work stealing

• This approach is similar to the master/worker solution
– Each participant maintains a queue of tasks that it has been assigned
– Tasks can be assigned-to or taken-by unemployed fellow participants

• The difference is that it’s distributed
– Each participant is both a “master” and a worker to its immediate neighbors
– Unemployed participants receive/take a task from a neighbor

• Pro: scales to any number of participants
• Con: if there’s an overload of work at one end of the 

system and a shortage at the other, it takes a while (and 
many requests) before it evens out
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Hybrid programming

• As you may have noticed, the four programming models we cover in 
this class can be combined
– MPI enables communication between multi-core SMP systems
– Within each SMP system, we have several cores

• They can run Pthreads
• They can run OpenMP threads

– Within each SMP system, we may also have one or more GPUs
• They can run CUDA kernels

• 15 years ago, studies of how to best combine separate programming 
models called it “hybrid programming”
– Nobody calls it anything special anymore, because everyone is doing it now

• The only reason we’ve worked with each model separately is because 
it is easier for me to talk about one thing at a time
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Tradeoffs in hybrid programming
Threads vs. processes

• With, say, 4 nodes that have 2 CPU sockets with 8 
cores on each, you can
– Run 64 MPI ranks

– Run 4 MPI ranks (1 per node), and 16 threads in each rank

– Run 8 MPI ranks (1 per cpu socket in each node), and 8 threads in 
each rank

– Run 32 ranks with 2 threads in each…

• What is the best combination?
– It depends on how your program uses memory

– Try it out and measure the effect
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Tradeoffs in hybrid programming
Threads vs. processes

• When you have threads in an MPI rank, you can
– Make 1 thread responsible for communication, and have it do all the 

MPI calls

– Let all the threads make MPI calls whenever they want
(NB – Send and Recv are guaranteed to be thread-safe, but many of 
the more complicated MPI calls aren’t, tread carefully)

– Let all the threads use MPI, but enforce mutual exclusion with locks

• What is the best combination?
– There is a very strong argument that only allowing one master 

thread to handle MPI is optimal*

– You can create exceptions, but it’s a good rule of thumb

* “Comparison of Parallel Programming Models on Clusters of SMP Nodes”,
   R. Rabenseifner and G. Wellein, Proceedings of the International
   Conference on High Performance Scientific Computing, 2003
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Tradeoffs in hybrid programming
Processes and GPUs

• When you have multiple GPUs in one system, there is 
a similar tradeoff
– You can create 1 process that controls all GPUs
– You can create 1 process per GPU, and get the processes to talk via 

MPI
– With the right kind of GPUs, you can get them to talk without involving 

the hosting processes
– With the right kind of MPI, you can send and recv messages directly 

in device memory, without moving it via the hosting process

• What’s best?
– See the similar entry on balancing threads with processes


	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

