
The GPU and U
Bart Iver van Blokland

GPUs are commonplace in today’s computers

● How did the GPU come to be?

● How does the architecture of a GPU differ from a CPU?

What is a GPU and how does it differ from a CPU?

History of the GPU
● Drawing pictures is generally too demanding for a CPU,

so we offload that job to a separate graphics processor

● The CPU can do useful stuff while the video
processor is busy

● Very early “graphics chips” were developed for interactive
text terminals

● Games have been a driving force in the development of
graphics hardware

History of the GPU
The early days:

RAM is too expensive, so
you generate the image as
it is being sent to the screen

History of the GPU
The 1980’s

Increased capabilities of
video processors allow for
the creation of 2D scenes
with some details by
drawing a few small images
(called sprites) over and
over again.

Their capabilities expanded
during the second half of
the decennium.

History of the GPU

History of the GPU
The 1990’s

Advent of realtime 3D
rendering on consumer
hardware. Introduction of
APIs such as OpenGL and
Direct3D.

History of the GPU
Before we continue: how 3D is rendered

Step 1: Define and transform triangles

History of the GPU
Before we continue: how 3D is rendered

Step 2: Rasterise triangles and compute their colour

Texturing: pasting
images on triangles

Lighting: simulate
the effects of light
sources

History of the GPU
The early 2000’s

Great consolidation of manufacturers around the turn of the century.

State of the industry:
● Everything is done in fixed-function hardware

Vertex transformations and pixel colours are determined by
predefined equations to which the programmer supplies the
constant and parameter values.

● Graphics card vendors distinguish their products with features such as
higher resolution textures and better lighting.

Developers wanted more freedom to specify how their scenes are drawn..

History of the GPU

History of the GPU
2001: Release of the GeForce 3

First programmable GPU

Vertex positions could be
calculated using a short
program called a “vertex
shader”

Pixel colours were
similarly computed using
a “pixel shader”

Still mostly fixed function

History of the GPU
2002 to 2005:

Improvements to the
vertex and pixel shader
processors increase their
flexibility.

Flexibility also leads to
the adoption of graphical
techniques that were
previously impossible to
achieve.

History of the GPU
Realisation: we can exploit this!

””vertex data””

””vertex shader”” Rasterisation ””pixel shader””

””image””

””textures””

History of the GPU
Realisation: we can exploit this!

””vertex data””

””vertex shader”” Rasterisation ””pixel shader””

””image””

Arbitrary data

Arbitrary data processing

Useful output data

””textures””

History of the GPU
2005: The idea of general purpose GPU computing

● Vertex and pixel calculations are independent.
GPU’s therefore had the ability to process
multiple vertex and pixel shaders in parallel.

● For simple programs, exploiting this pipeline
yielded much higher throughput than using a
conventional CPU.

● Could greatly accelerate scientific computing,
such as simulation and image processing.

History of the GPU
2006: the General Purpose GPU (GPGPU)

● The modern GPU that we use today

● A general purpose throughput oriented
processor that can also render images

● Compute oriented cards are developed
with the same GPU architecture but
without any display outputs

History of the GPU
2007 – today: scaling up

● A number of GPU computing APIs are developed:
● CUDA (dominates the market today)
● OpenCL
● Vulkan (topic of guest lecture)
● ROCm
● SYCL (OpenCL successor)

● Improvements to processing power,
more memory capacity, and
collaboration between GPUs. Also
much higher power consumption.

In conclusion:

● The modern GPU arose because game developers
wanted flexibility, which fixed-function hardware could
not address

● GPU computing was invented by exploiting graphics
hardware for unintended purposes

● Those unintended purposes are now a main driving
force behind new GPU (and other accelerator)
development

● How did the GPU come to be?

● How does the architecure of a GPU differ from a CPU?

What is a GPU and how does it differ from a CPU?

The CPU can be faster than the GPU

Professional sprinter:

+ Covers small distances super quickly
- Takes a while to run 1000 km

City Marathon:

- Individual people are kind of slow
+ Combined distance of runners sums
up to 1000km very quickly

The GPU has a number of performance “gotchas”

● Need to understand some intricate parts of its architecture to
achieve optimal performance

How does the GPU architecture differ from the CPU?
Let’s start with some specifications and see what each processor type can do

Source: Blender Demo Files, Agent 327 Barbershop

How does the GPU architecture differ from the CPU?
Let’s start with some specifications..

Cores: 16 (32 threads)
Render time: 571 seconds
Power usage: 234W

Cores: 128 (256 threads)
Render time: 70 seconds (2 processors)
Power usage: 385W

Contender 2: AMD Epyc 9754Contender 1: AMD Ryzen 9 7950X

How does the GPU architecture differ from the CPU?
Let’s start with some specifications..

Cores: 16,384
Render time: 9.71 seconds
Power usage: 483W

Contender 3: Nvidia GeForce RTX 4090

Contender 4: AMD RX 7900 XTX

Cores: 6,144
Render time: 21 seconds
Power usage: 320W

Cheating, of course!

1000’s of cores?? How is that possible?

The closest thing a GPU has to a CPU
core is the Streaming Multiprocessor (SM)

Each SM has 128 32-bit floating point units

How does the GPU architecture differ from the CPU?
Let’s start with some specifications..

GPU Cores: 128
Render time: 9.71 seconds
Power usage: 483W

Contender 3: Nvidia GeForce RTX 4090

Contender 4: AMD RX 7900 XTX

GPU Cores: 96
Render time: 21 seconds
Power usage: 320W

Let’s now take a closer look at how the SM works!

Notes:

– Information and terminology focuses on nvidia, but concepts are
effectively vendor agnostic

– Nvidia does not reveal many details about its architecture. Some
details are a «best guess» because they are simply not known

– Architecture has changed over time. We’ll be discussing the
latest version today (codename Ada Lovelace)

Main similarities between the CPU and GPU:

● Both are general purpose processor cores

● Both use a Superscalar Architecture

CPU
Instructions

GPU
Instructions

Reminder: Out of Order CPU design

Port 0 Port 1 Port 2/3 Port 4/9 Port 7/8 Port 5 Port 6
Integer
Floating Point
256-bit vector
ALU
mul/div
Branch

Integer
Floating Point
ALU

Load Store Store Address Integer
512-bit vector

Integer ALU
Branch

Thread

inst 2

inst 1

inst 0

Reminder: Out of Order CPU design

Port 0 Port 1 Port 2/3 Port 4/9 Port 7/8 Port 5 Port 6
Integer
Floating Point
256-bit vector
ALU
mul/div
Branch

Integer
Floating Point
ALU

Load Store Store Address Integer
512-bit vector

Integer ALU
Branch

Thread

inst 2

inst 1

inst 0

Reminder: Out of Order CPU design

Port 0 Port 1 Port 2/3 Port 4/9 Port 7/8 Port 5 Port 6
Integer
Floating Point
256-bit vector
ALU
mul/div
Branch

Integer
Floating Point
ALU

Load Store Store Address Integer
512-bit vector

Integer ALU
Branch

Blocked while the
instruction is executing

CPU can execute other
instructions in the
meantime

Thread

inst 2

inst 1

inst 0

Reminder: Out of Order CPU design

Port 0 Port 1 Port 2/3 Port 4/9 Port 7/8 Port 5 Port 6
Integer
Floating Point
256-bit vector
ALU
mul/div
Branch

Integer
Floating Point
ALU

Load Store Store Address Integer
512-bit vector

Integer ALU
Branch

Thread A Thread B

inst 2 inst 2

inst 1 inst 1

inst 0 inst 0

Hyperthreading /
Simultaneous Multithreading:

Multiple independent threads
sharing the same execution ports

GPU Core architecture
Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 ... Thread 2047

inst 2 inst 2 inst 2 inst 2 inst 2 inst 2 inst 2

inst 1 inst 1 inst 1 inst 1 inst 1 inst 1 inst 1

inst 0 inst 0 inst 0 inst 0 inst 0 inst 0 inst 0

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6
Floating Point
(32-bit)
Integer
(32-bit)

Floating Point
(32-bit)

Load
Store

Low-Precision
Matrix
(aka tensor
core)

Special
Functions Unit
(SFU)

Ray Tracing
Acceleration

Rasterisation
Texture Unit

* Port numbering and layout not specified by nvidia

4x per SM

GPU Core architecture
Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 ... Thread 2047

inst 2 inst 2 inst 2 inst 2 inst 2 inst 2 inst 2

inst 1 inst 1 inst 1 inst 1 inst 1 inst 1 inst 1

inst 0 inst 0 inst 0 inst 0 inst 0 inst 0 inst 0

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6
Floating Point
(32-bit)
Integer
(32-bit)

Floating Point
(32-bit)

Load
Store

Low-Precision
Matrix
(aka tensor
core)

Special
Functions Unit
(SFU)

Ray Tracing
Acceleration

Rasterisation
Texture Unit

* Port numbering and layout not specified by nvidia

4x per SM

What about their differences?

● Similarities:
● Both are general purpose processors
● Both use a superscalar execution architecture

● Differences:
● Many. They will become very apparent when we

discuss the architecture in detail

GPU Architecture

● Thread execution (warps)

Thread execution: warps
● Each individual thread is executed in order

● A CPU thread is in principle not different from a GPU thread

● Threads are executed in groups of 32 threads* called “warps”
● Threads in a warp all execute the exact same instructions
● Grouped execution greatly simplifies core design
● GPUs are designed to do the same thing over and over

again, so this is a reasonable restriction
● Also has advantages (topic for next week)

Fetch Decode Execute Commit

*64 on AMD, variable on Intel

Main reason for warps: only one
decode needed for 32 threads!

Thread execution: warps

Instruction T0 T1 T2 T3 T4 T5 T6 T7 ... T31

a = input1[i]; a = 3 a = 2 a = 30 a = 17 a = 7 a = 11 a = 15 a = 21 a = 25

b = input2[i]; b = 8 b = 11 b = 6 b = 20 b = 21 b = 28 b = 14 b = 4 b = 6

c = a + b; c = 11 c = 13 c = 36 c = 37 c = 28 c = 39 c = 29 c = 25 c = 31

c = c * 2; c = 22 c = 26 c = 72 c = 74 c = 56 c = 78 c = 58 c = 50 c = 62

c = c – b; c = 14 c = 15 c = 66 c = 54 c = 35 c = 50 c = 44 c = 46 c = 56

Fetch Decode Execute Commit

GPU Architecture

● Thread execution (warps)
● Branches in threads

Thread Divergence
● When a branch occurs (if statement or loop), all threads in the warp

must participate, even if they are not part of that execution path

● For if statements: if even one thread chooses the if or else clause,
all threads in the warp must participate in executing that path

● For loops, all threads in the warp must participate until the final
thread has finished iterating

Thread divergence
Instruction T0 T1 T2 T3 T4 T5 T6 T7 ... T31

a = input1[i]; a = 3 a = 2 a = 30 a = 17 a = 7 a = 11 a = 15 a = 21 a = 25

b = input2[i]; b = 8 b = 11 b = 6 b = 20 b = 21 b = 28 b = 14 b = 4 b = 6

c = a + b; c = 11 c = 13 c = 36 c = 37 c = 28 c = 39 c = 29 c = 25 c = 31

c = c * 2; c = 22 c = 26 c = 72 c = 74 c = 56 c = 78 c = 58 c = 50 c = 62

c = c – b; c = 14 c = 15 c = 66 c = 54 c = 35 c = 50 c = 44 c = 46 c = 56

if(c >= 50) { false false true true false true false false true

a = 5; N/A N/A a = 5 a = 5 N/A a = 5 N/A N/A a = 5

} else {

a = 10; a = 10 a = 10 N/A N/A a = 10 N/A a = 10 a = 10 N/A

}

c = c – a; c = 4 c = 5 c = 61 c = 49 c = 25 c = 45 c = 34 c = 36 c = 51

N/A: thread participates in the warp, but does not execute the instruction

Thread divergence
● Thread divergence is only a problem if threads are following

different execution paths
● Avoid long if/else statements where threads are likely to

choose different paths
● Avoid loops with a highly variable number of iterations

● Tips if these are unavoidable:
● Branches can often be replaced with maths
● Rewriting multiple nested loops as a single loop

→ An algorithm which runs well on the CPU does not
necessarily do so on the GPU

Flynn’s taxonomy
● The warp-based execution model is a subclass of SIMD in Flynn’s

taxonomy, called Single Instruction Multiple Thread (SIMT).

● In many ways similar to SIMD:
● SIMD: A single instruction executes multiple data operations

in a single thread
● SIMT: A single instruction executes a single data operation in

multiple threads

● Thread execution (warps of 32 threads)
● Thread divergence (avoid branches)
● Context switching

GPU Architecture

GPU context switching
● Context switching: time sharing a processor by switching

out which thread is executing on it

● How does the CPU do a context switch?

GPU context switching
● Context switching: time sharing a processor by switching

out which thread is executing on it

● How the CPU does a context switch:

1. Store the Program Counter (PC)
2. Store all registers in stack memory
3. Load registers from new thread from stack
4. Jump to PC of new thread
5. Continue executing new thread

● Usually takes many cycles to perform

● Typically incurs a speed penalty because the
cache(s) are usually not set up for the new thread.

GPU Context Switching
● A GPU does a context switch Every Single Clock Cycle

● Register files store all registers of all threads

● No need to swap registers when they are already
there anyway

● Each SM can store 65,536 registers.
With a limit of 2048 threads per SM, that is 32
registers / thread on average

● Each cycle, 4 warps are chosen that are able to
execute an instruction and assigned to an available
port capable of executing that instruction.

● Thread execution (warps of 32 threads)
● Thread divergence (avoid branches)
● Context switching (done each cycle)
● Why fast thread switching?

GPU Architecture

The Memory System
● The GPU has a shared L2 cache
● Each SM has its own L1 cache and a

separate instruction cache
● VRAM uses bandwidth-optimised GDDR

VRAM (GDDR6X)

The Memory System
● GDDR tries to maximise bandwidth

● Regular DDR also aims for low latency

● The Big Kicker™: latency is terrible

And there are 1000’s of threads trying to
access it..

Problem: Warps stall. A lot.

If we were to execute threads as if on a CPU:

Warp 3

Clock
cycle
0

Clock
cycle
1000

Clock
cycle
2000

Clock
cycle
3000

Clock
cycle
4000

Clock
cycle
5000

Clock
cycle
6000

Clock
cycle
7000

Clock
cycle
8000

Warp 3

Clock
cycle
9000

(warp 3 waits for memory transaction)

Warp 3

Clock
cycle
0

Clock
cycle
1000

Clock
cycle
2000

Clock
cycle
3000

Clock
cycle
4000

Clock
cycle
5000

Clock
cycle
6000

Clock
cycle
7000

Clock
cycle
8000

Warp 3

Clock
cycle
9000

(warp 3 waits for memory transaction)

Warp 5

(warp 5 waits for memory transaction)

Warp 5

Solution: execute other threads in the meantime

Warp 3

Clock
cycle
0

Clock
cycle
1000

Clock
cycle
2000

Clock
cycle
3000

Clock
cycle
4000

Clock
cycle
5000

Clock
cycle
6000

Clock
cycle
7000

Clock
cycle
8000

Warp 3

Clock
cycle
9000

(warp 3 waits for memory transaction)

Warp 5

(warp 5 waits for memory transaction)

Warp 5Warp 2

(warp 2 waits for memory transaction)

Warp 4

(warp 4 waits for memory transaction)

Warp 1

Solution: execute other threads in the meantime

Warp 3

Clock
cycle
0

Clock
cycle
1000

Clock
cycle
2000

Clock
cycle
3000

Clock
cycle
4000

Clock
cycle
5000

Clock
cycle
6000

Clock
cycle
7000

Clock
cycle
8000

Warp 3

Clock
cycle
9000

(warp 3 waits for memory transaction)

Warp 5

(warp 5 waits for memory transaction)

Warp 5Warp 2

(warp 2 waits for memory transaction)

Warp 4

(warp 4 waits for memory transaction)

Result: Since an SM is ideally always executing code,
memory latency is hidden!

Warp 1 Warp 6

Occupancy=
Cycles SM busy
TotalCycles

Occupancy: measure for GPU utilisation

● Thread execution (warps of 32 threads)
● Thread divergence (avoid branches)
● Context switching (done each cycle)
● Latency hiding
● Thread hierarchy

GPU Architecture

Thread Hierarchy
● An SM can only have a certain number of threads

active at the same time (usually 2048)

● Our problems are usually much larger, and we tend to
use many threads

→ Solution: create a thread hierarchy

gridDim.y
Grid

gridDim.x

gridDim.z

The grid represents all threads
that we would like to run

Example: one thread per pixel
in an image

b
l
o
c
k
D
i
m
.
y

Grid
blockDim.x

blockDim.z

Block

A block is a chunk of our grid that
is small enough to fit within an SM

Grid Block

Thread

A block consists of a
number of threads

dim3 blockSize1(5, 5, 4);
dim3 gridSize1(800, 10, 10);
someKernel<<<gridSize1, blockSize1>>>();

dim3 blockSize2(10, 8, 2);
dim3 gridSize2(250, 100, 1);
someKernel<<<gridSize2, blockSize2>>>();

Which of these is better?

A

B

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

Block

Block

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

Block

Block

Thread Hierarchy
● Launching a kernel requires specifying the

dimensions of the grid and blocks within

● When the kernel is launched, a queue of blocks
is created.

● Blocks run until all threads within have finished

● The order in which blocks are run is not defined

● Once a block is finished, the next one in the
queue is allocated to that SM

● Blocks should be dimensioned such that they
contain a multiple of 32 threads

● Thread execution (warps of 32 threads)
● Thread divergence (avoid branches)
● Context switching (done each cycle)
● Latency hiding
● Thread hierarchy
● Thread interaction

GPU Architecture

Thread Interaction
● Interaction between threads within the

same warp is cheap, and easy to do within
the same block

● Allows for some of the coolest
features of the GPU

● Most common: __syncthreads();
Barrier for all threads in the block

● You can and should not try to synchronise
threads across blocks. Launch multiple
kernels instead.

Thread Interaction: atomics
● The GPU does not have mutexes.

● The only mechanism for avoiding race
conditions are atomic instructions

int atomicAdd(int* address, int val);
int atomicSub(int* address, int val);
int atomicExch(int* address, int val);
int atomicMin(int* address, int val);
int atomicMax(int* address, int val);
unsigned int atomicInc(..);
unsigned int atomicDec(..);
int atomicCAS(int* address, int compare, int val);
int atomicAnd(int* address, int val);
int atomicOr(int* address, int val);
int atomicXor(int* address, int val);

● Thread execution (warps of 32 threads)
● Thread divergence (avoid branches)
● Context switching (done each cycle)
● Latency hiding
● Thread hierarchy
● Thread interaction
● User-manageable L1 cache

GPU Architecture

Shared Memory
● Each SM has its own L1 cache (128 KB

on Lovelace)

● You can use a part of the L1 cache to use
as temporary storage, known as “shared
memory”

● Much faster than main memory (~10x)

● Useful if you know you will use a piece of
data many times (e.g. a histogram)

● Thread execution (warps of 32 threads)
● Thread divergence (avoid branches)
● Context switching (done each cycle)
● Latency hiding
● Thread hierarchy
● Thread interaction

GPU Architecture

● Cooperative groups

● Profiling of CUDA kernels

Tomorrow

77

https://jakevdp.github.io/images/mario_pattern_background.png
https://www.8-bitcentral.com/images/reviews/atari2600/fatalRun2600Screen.jpg
https://external-preview.redd.it/7UaFyYPXHTW2c_f84IT-FI72jCG7Xy6VvB13dRB_YFI.jpg?auto=webp&s=04f1399d8bbafc712d7422bf0c445ff59afa292a
https://upload.wikimedia.org/wikipedia/en/6/69/Wolf3d_pc.png
www.loadthegame.com/wp-content/uploads/2014/09/quake-live-steam-launch.jpg
http://www.vraymaterials.co.uk/tutorials/making-of-gt3-race-scene/
http://img.cadnav.com/allimg/170707/cadnav-1FFG43U3.jpg
By Swaaye at the English-language Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=76420413
http://www.emu-france.com/wp-content/uploads/2014/05/glquake.jpg
https://assets.hardwarezone.com/img/2018/06/HGX-2_4.jpg
https://www.allround-pc.com/wp-content/uploads/2020/08/DSC02464-scaled.jpg
https://www.bhphotovideo.com/images/images2500x2500/apple_mj2x2ll_a_watch_sport_smartwatch_38mm_1187194.jpg
https://www.bhphotovideo.com/images/images2500x2500/toshiba_pscpsu_009007_15_6_satellite_c55_series_1222345.jpg
https://cdn.hobbyconsolas.com/sites/navi.axelspringer.es/public/media/image/2014/04/319838-20-mejores-juegos-atari-2600.jpg

https://jakevdp.github.io/images/mario_pattern_background.png
https://www.8-bitcentral.com/images/reviews/atari2600/fatalRun2600Screen.jpg
https://external-preview.redd.it/7UaFyYPXHTW2c_f84IT-FI72jCG7Xy6VvB13dRB_YFI.jpg?auto=webp&s=04f1399d8bbafc712d7422bf0c445ff59afa292a
https://upload.wikimedia.org/wikipedia/en/6/69/Wolf3d_pc.png
http://www.loadthegame.com/wp-content/uploads/2014/09/quake-live-steam-launch.jpg
http://www.vraymaterials.co.uk/tutorials/making-of-gt3-race-scene/
http://img.cadnav.com/allimg/170707/cadnav-1FFG43U3.jpg
https://commons.wikimedia.org/w/index.php?curid=76420413
http://www.emu-france.com/wp-content/uploads/2014/05/glquake.jpg
https://assets.hardwarezone.com/img/2018/06/HGX-2_4.jpg
https://www.allround-pc.com/wp-content/uploads/2020/08/DSC02464-scaled.jpg
https://www.bhphotovideo.com/images/images2500x2500/apple_mj2x2ll_a_watch_sport_smartwatch_38mm_1187194.jpg
https://www.bhphotovideo.com/images/images2500x2500/toshiba_pscpsu_009007_15_6_satellite_c55_series_1222345.jpg
https://cdn.hobbyconsolas.com/sites/navi.axelspringer.es/public/media/image/2014/04/319838-20-mejores-juegos-atari-2600.jpg

	ÅPNINGSSIDE/TITTEL HER
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

