
Cooperation Organisation
Bart Iver van Blokland

● More about SM limits

● Cooperative groups

Today

SM Limits
● SM functionality is implemented in hardware

● Imposes limits on the number of simultaneously
executing threads

● If misconfigured can leave a lot of performance
on the table

● Upside: easy changes can improve
performance quite a bit

gridDim.y
Grid

gridDim.x

gridDim.z

The grid represents all threads
that we would like to run

Example: one thread per pixel
in an image

b
l
o
c
k
D
i
m
.
y

Grid
blockDim.x

blockDim.z

Block

A block is a chunk of our grid that
is small enough to fit within an SM

Grid Block

Thread

A block consists of a
number of threads

someKernel<<<50, 32>>>(parameter1, parameter2);

dim3 gridDimensions = {30, 20, 1};
dim3 blockDimensions = {32, 2, 1};
someKernel<<<gridDimensions, blockDimensions>>>(...);

Launching a 1D kernel:

Launching multiple dimensions: Make sure no
dimension is 0!

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

Block

Block

SM SM SM SM SM SM SM SM

Block Block Block Block Block Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Grid represents a queue of blocks

Block

Block

SM Limits (Ada Lovelace)
● Limit 1: Number of threads per block: 1024
● Limit 2: Number of blocks per SM: 24
● Limit 3: Number of warps per SM: 48 (1536 threads)
● Limit 4: Number of registers per thread: 255
● Limit 5: Available shared memory: up to 100Kb

Note: vary quite a bit for each architecture generation

And there are more..

Registers

Thread

Warp

Each thread uses a fixed
number of registers

A warp uses 32x that number
of registers

War
p

Visual
simplification

● Register values are kept in the register files
within the SM

Warp

SM Register File

Warp

SM Register File

Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp

● Limit 6: register requirements limit the number of
warps that can be executed simultaneously in
an SM

Warp

SM Register File

Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp

● Limit 6: register requirements limit the number of
warps that can be executed simultaneously in
an SM

● Limit 7: blocks have a constant number of warps
and cannot be partially allocated to an SM

Block 0 Block 1

There is space for
another warp here

Warp

SM Register File

Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp

Making blocks smaller can help,
but not necessarily.

Block 0 Block 1 Block 2

Note: blocks are units of threads
allocated to SM’s.

While running the threads in a
block, the SM executes
instructions as warps

Block Block Block Block Block Block Block Block

● Limit 8: shared memory required by each block
limits the number of warps

__shared__ float partialSums[128];

You may be able to alter the amount
depending on your algorithm

Block size tradeoffs
● Why larger blocks:

● More ability to cooperate
between threads

● Better reuse of shared
memory

● Why smaller blocks:
● Less waiting for all warps in

the block to finish
● May (but not always)

improve occupancy by
allowing more warps to
execute simulateneously

SM Limits
● All these limits affect the active warp count

● Even a small increase in block size or shared memory
requirements can halve your active warp count and
thereby (often) performance

● nvidia has made tools available to help you find the
optimal block dimensions based on your kernel

● More about SM limits

● Cooperative groups

Today

Cooperative Groups
● Take the threads in blocks and warps, and

partitions them into groups that work together.

● Most of this collaboration stems from
communication between threads within the
same warp being cheap on the GPU

● We will talk about this collaboration in the
next lecture

● For today: can get specific threads to wait
for each other

Cooperative Groups
● How to use cooperative groups:

#include <cooperative_groups.h>

// Not required, but recommended
namespace cg = cooperative_groups;

Cooperative Groups
● Group types (sorted smallest to largest)

● Coalesced group: the threads in the current warp, but only the ones
that are executing at that point in time

● Block group: a group with all threads in the current block

● Grid group: a group of all threads in the entire grid

● Cluster group: a cluster is a union of multiple thread blocks. Currently
unavailable to us mortals (only supported on the H100 GPU)

Coalesced Group

__global__ void kernel() {
 if(threadIdx.x < 12) {
 return;
 }
 cg::coalesced_group warp = cg::coalesced_threads();
 printf(“Thread %i/%i\n”, warp.thread_rank(),
 warp.num_threads());
}

int main() {
 kernel<<<1, 32>>>();
 cudaDeviceSynchronize();
 return 0;
}

32 threads active here

20 threads active here

Block Group

__global__ void kernel() {
 cg::thread_block block = cg::this_thread_block();
 printf(“Thread %i/%i\n”, block.thread_rank(),
 block.num_threads());
}

int main() {
 kernel<<<1, 256>>>();
 cudaDeviceSynchronize();
 return 0;
}

Here:
thread_rank() is between 0 and 255
num_threads() is 256

Grid Group

__global__ void kernel() {
 cg::grid_group grid = cg::this_grid();
 printf(“Thread %i/%i\n”, grid.thread_rank(),
 grid.num_threads());
}

int main() {
 cudaLaunchCooperativeKernel(kernel, {20, 1, 1},
 {256, 1, 1}, nullptr);
 cudaDeviceSynchronize();
 return 0;
} Restrictions:

● GPU you run the grid on MUST be able to run
ALL blocks at the same time

● Cannot use the <<<>>> syntax, must use
function to launch kernel

Here: 0 to 5119
Here: 5120

Cooperative Groups
● num_threads() and thread_rank() are

thin abstractions over threadIdx, blockDim,
blockIdx, and gridDim.

● The advantages of cooperative groups lie
elsewhere:

● Group partitioning
● Selective synchronisation
● Somewhat simplified warp communication

Group Partitioning
● Create smaller subgroups from larger ones
● Similar capabilities and interface to the larger groups

Group Partitioning
● Create smaller subgroups from larger ones

● From cg::thread_block:

cg::thread_block block = cg::this_thread_block();

// Use if size known at compile time:
cg::thread_block_tile<8> tile8 = cg::tiled_partition<8>(block);

// Use if size unknown at compile time:
cg::thread_group tile8_dynamic = cg::tiled_partition(block, 8);

Warp partitioning
● From cg::thread_block:

cg::coalesced_group warp = cg::coalesced_threads();

// Use if partition count known at compile time:
int label = threadIdx.x % 8;
cg::coalesced_group<8, int> part
 = cg::labeled_partition<int>(warp, label);

// Use if partition count unknown at compile time:
cg::coalesced_group<int> part_dynamic
 = cg::labeled_partition(warp, label);

// binary_partition: use if you only need to split in 2 using a
boolean predicate

Selective synchronisation
● For ANY group or partition, call the sync() function on

the group object to place a barrier and wait for all
threads to reach that point in the kernel

cg::thread_block block = cg::this_thread_block();

block.sync();

Cooperative Groups
● Gotchas:

● All groups must contain a thread count that is a
power of 2

● Once created, the members of a group do not
change (important for coalesced_group)

● Need cooperative groups for syncing in branch

● More about SM limits

● Cooperative groups

Today

Next week

● GPU Shenanigans!

	ÅPNINGSSIDE/TITTEL HER
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

