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● More about SM limits

● Cooperative groups

Today



SM Limits
● SM functionality is implemented in hardware

● Imposes limits on the number of simultaneously 
executing threads

● If misconfigured can leave a lot of performance 
on the table

● Upside: easy changes can improve 
performance quite a bit
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The grid represents all threads 
that we would like to run

Example: one thread per pixel 
in an image
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Block

A block is a chunk of our grid that 
is small enough to fit within an SM



Grid Block

Thread

A block consists of a 
number of threads



someKernel<<<50, 32>>>(parameter1, parameter2);

dim3 gridDimensions = {30, 20, 1};
dim3 blockDimensions = {32, 2, 1};
someKernel<<<gridDimensions, blockDimensions>>>(...);

Launching a 1D kernel:

Launching multiple dimensions: Make sure no 
dimension is 0!
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SM Limits (Ada Lovelace)
● Limit 1: Number of threads per block: 1024
● Limit 2: Number of blocks per SM: 24
● Limit 3: Number of warps per SM: 48 (1536 threads)
● Limit 4: Number of registers per thread: 255
● Limit 5: Available shared memory: up to 100Kb

Note: vary quite a bit for each architecture generation

And there are more..



Registers

Thread

Warp

Each thread uses a fixed 
number of registers

A warp uses 32x that number 
of registers

War
p

Visual 
simplification



● Register values are kept in the register files 
within the SM

Warp

SM Register File



Warp

SM Register File

Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp

● Limit 6: register requirements limit the number of 
warps that can be executed simultaneously in 
an SM



Warp

SM Register File

Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp

● Limit 6: register requirements limit the number of 
warps that can be executed simultaneously in 
an SM

● Limit 7: blocks have a constant number of warps 
and cannot be partially allocated to an SM

Block 0 Block 1

There is space for 
another warp here



Warp

SM Register File

Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp

Making blocks smaller can help, 
but not necessarily.

Block 0 Block 1 Block 2

Note: blocks are units of threads 
allocated to SM’s. 

While running the threads in a 
block, the SM executes 
instructions as warps



Block Block Block Block Block Block Block Block

● Limit 8: shared memory required by each block  
limits the number of warps

__shared__ float partialSums[128];

You may be able to alter the amount 
depending on your algorithm



Block size tradeoffs
● Why larger blocks: 

● More ability to cooperate 
between threads

● Better reuse of shared 
memory

● Why smaller blocks:
● Less waiting for all warps in 

the block to finish
● May (but not always) 

improve occupancy by 
allowing more warps to 
execute simulateneously



SM Limits
● All these limits affect the active warp count

● Even a small increase in block size or shared memory 
requirements can halve your active warp count and 
thereby (often) performance

● nvidia has made tools available to help you find the 
optimal block dimensions based on your kernel



● More about SM limits

● Cooperative groups

Today



Cooperative Groups
● Take the threads in blocks and warps, and 

partitions them into groups that work together.

● Most of this collaboration stems from 
communication between threads within the 
same warp being cheap on the GPU

● We will talk about this collaboration in the 
next lecture

● For today: can get specific threads to wait 
for each other



Cooperative Groups
● How to use cooperative groups:

#include <cooperative_groups.h>

// Not required, but recommended
namespace cg = cooperative_groups;



Cooperative Groups
● Group types (sorted smallest to largest)

● Coalesced group: the threads in the current warp, but only the ones 
that are executing at that point in time

● Block group: a group with all threads in the current block

● Grid group: a group of all threads in the entire grid

● Cluster group: a cluster is a union of multiple thread blocks. Currently 
unavailable to us mortals (only supported on the H100 GPU)



Coalesced Group

__global__ void kernel() {
    if(threadIdx.x < 12) {
        return;
    }
    cg::coalesced_group warp = cg::coalesced_threads();
    printf(“Thread %i/%i\n”, warp.thread_rank(),
                             warp.num_threads());
}

int main() {
    kernel<<<1, 32>>>();
    cudaDeviceSynchronize();
    return 0;
}

32 threads active here

20 threads active here



Block Group

__global__ void kernel() {
    cg::thread_block block = cg::this_thread_block();
    printf(“Thread %i/%i\n”, block.thread_rank(),
                             block.num_threads());
}

int main() {
    kernel<<<1, 256>>>();
    cudaDeviceSynchronize();
    return 0;
}

Here:
thread_rank() is between 0 and 255
num_threads() is 256



Grid Group

__global__ void kernel() {
    cg::grid_group grid = cg::this_grid();
    printf(“Thread %i/%i\n”, grid.thread_rank(),
                             grid.num_threads());
}

int main() {
    cudaLaunchCooperativeKernel(kernel, {20, 1, 1}, 
                                {256, 1, 1}, nullptr);
    cudaDeviceSynchronize();
    return 0;
} Restrictions:

● GPU you run the grid on MUST be able to run 
ALL blocks at the same time

● Cannot use the <<<>>> syntax, must use 
function to launch kernel

Here: 0 to 5119
Here: 5120



Cooperative Groups
● num_threads() and thread_rank() are 

thin abstractions over threadIdx, blockDim, 
blockIdx, and gridDim. 

● The advantages of cooperative groups lie 
elsewhere:

● Group partitioning
● Selective synchronisation
● Somewhat simplified warp communication



Group Partitioning
● Create smaller subgroups from larger ones
● Similar capabilities and interface to the larger groups



Group Partitioning
● Create smaller subgroups from larger ones

● From cg::thread_block:

cg::thread_block block = cg::this_thread_block();

// Use if size known at compile time:
cg::thread_block_tile<8> tile8 = cg::tiled_partition<8>(block);

// Use if size unknown at compile time:
cg::thread_group tile8_dynamic = cg::tiled_partition(block, 8);



Warp partitioning
● From cg::thread_block:

cg::coalesced_group warp = cg::coalesced_threads();

// Use if partition count known at compile time:
int label = threadIdx.x % 8;
cg::coalesced_group<8, int> part 
    = cg::labeled_partition<int>(warp, label);

// Use if partition count unknown at compile time:
cg::coalesced_group<int> part_dynamic 
    = cg::labeled_partition(warp, label);

// binary_partition: use if you only need to split in 2 using a 
boolean predicate



Selective synchronisation
● For ANY group or partition, call the sync() function on 

the group object to place a barrier and wait for all 
threads to reach that point in the kernel

cg::thread_block block = cg::this_thread_block();

block.sync();



Cooperative Groups
● Gotchas:

● All groups must contain a thread count that is a 
power of 2

● Once created, the members of a group do not 
change (important for coalesced_group)

● Need cooperative groups for syncing in branch



● More about SM limits

● Cooperative groups

Today

Next week

● GPU Shenanigans!
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