
Shuffle Shenanigans
Bart Iver van Blokland

● Repetition: thread structure and limits

● Performance pitfalls

● Collective instructions

Today

Thread structure
● A grid consists of blocks
● Blocks consist of threads
● Groups of 32 threads within a block represent a warp

– All instructions are executed grouped as a warp
● Block coordinates are «flattened» into warps

0, 0 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1

0, 2 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 7, 2 8, 2

0, 3 1, 3 2, 3 3, 3 4, 3 5, 3 6, 3 7, 3 8, 3

0, 4 1, 4 2, 4 3, 4 4, 4 5, 4 6, 4 7, 4 8, 4

Warp 1

Warp 2

Group Partitioning
● Create smaller subgroups from larger ones
● Similar capabilities and interface to the larger groups

Block Block Block Block Block Block Block Block

● Limit 1: Number of threads per block: 1024
● Limit 2: Number of blocks per SM: 24
● Limit 3: Number of warps per SM: 48 (1536 threads)
● Limit 4: Number of registers per thread: 255
● Limit 5: Available shared memory: up to 100Kb
● Limit 6: register requirements limit the number of

warps that can be executed simultaneously in an SM
● Limit 7: blocks have a constant number of warps and

cannot be partially allocated to an SM
● Limit 8: shared memory required by each block

limits the number of warps

Tip:

The CUDA page on wikipedia has a
good overview over device-specific
features and limits

https://en.wikipedia.org/wiki/CUDA

https://en.wikipedia.org/wiki/CUDA

● Repetition: thread structure and limits

● Performance pitfalls
– Memory
– Suboptimal launch parameters
– Thread divergence
– Register spilling
– PCIe bandwidth

● Collective instructions

Today

● Repetition: thread structure and limits

● Performance pitfalls

–Memory
– Suboptimal launch parameters
– Thread divergence
– Register spilling
– PCIe bandwidth

● Collective instructions

● Now you’re thinking with warps

● Useful stuff

Today

Usually the primary bottleneck of a kernel

● Common issues:
– Non-coalesced memory reads

– Atomic write contention

● Common tool: struct of arrays

● Common tool: shared memory

● Memory tips

Memory

● All modern high performance processors have memory
systems built around cache lines
– CPU: usually 64 bytes per line
– GPU: usually 128 bytes per line (32 threads/warp x 4 bytes)

● Memory allocated using cudaMalloc() is always “aligned”;
byte 0 of the allocated region is at the start of a cache line

● Kicker: even if you read only a single byte, its containing
cache line must be loaded into the core in its entirety

Coalesced memory reads

● Kicker: even if you read only a single byte, its containing cache
line must be loaded into the core in its entirety

Coalesced memory reads

__global__ void kernel(int* array, int n) {
 int value = array[32 * threadIdx.x];
 // do stuff with value here
}

line 0 line 1 line 2 line 3 line 4 line 5 line 6 line 7 line 8 line 9

threadIdx 0
byte 0
index 0

threadIdx 1
byte 128
index 32

threadIdx 6
byte 768
index 192

● Double whammy:

– We need to load in one cache line per thread
● More memory traffic
● More wait time for each thread

– We only use 4 bytes from every 128 byte cache line
● Bad cache utilisation
● Bad bandwidth utilisation

Coalesced memory reads

__global__ void kernel(int* array, int n) {
 int value = array[32 * threadIdx.x];
 // do stuff with value here
}

Coalesced memory reads

__global__ void kernel(int* array, int n) {
 int value = array[threadIdx.x];
 // do stuff with value here
}

0 31

This kernel reads optimally:
● 1 cache line read per warp,
● Each thread reads 4 bytes
● 100% bandwidth utilisation
● These reads are called “coalesced”

4 bytes

Coalesced memory reads

__global__ void kernel1(int* array, int n) {
 int value = array[threadIdx.x + 1];
 // do stuff with value here
}

Quiz question: how many cache lines are loaded in per warp?

__global__ void kernel2(int* array, int n) {
 int value = array[blockIdx.x + 1];
 // do stuff with value here
}

__global__ void kernel3(int* array, int n) {
 int value = array[threadIdx.x + 1] – array[threadIdx.x];
 // do stuff with value here
}

● Common issues:
– Coalesced memory reads

– Atomic write contention

● Common tool: struct of arrays

● Common tool: shared memory

● Memory tips

Memory

__global__ void kernel(int* array, int* oddCount) {
 int value = array[threadIdx.x];
 if(value % 2 == 1) {
 atomicAdd(oddCount, 1);
 }
}

Atomic write contention
● When multiple threads attempt to perform an atomic

operation, their effects are serialised

● Threads have to wait for their turn

● Better solution: do a reduction within the warp, then have
a single thread (e.g. thread 0) do the atomic operation

● Common issues:
– Coalesced memory reads

– Atomic write contention

● Common tool: struct of arrays

● Common tool: shared memory

● Memory tips

Memory

● Problem: misaligned reads often come from structs

Common tool: struct of arrays

float4 vertex;
vertex.x = vertexArray[threadIndex].x;
vertex.y = vertexArray[threadIndex].y;
vertex.z = vertexArray[threadIndex].z;
vertex.w = vertexArray[threadIndex].w;

struct float4 {
 float x;
 float y;
 float z;
 float w;
};

● Problem: misaligned reads often come from structs

Common tool: struct of arrays

x y z w x y z w x y z w x y z w x y z w x y z w x y z w x y ...

float4 float4 float4 float4 float4 float4 float4 float4

float4 vertex;
vertex.x = vertexArray[threadIndex].x;
vertex.y = vertexArray[threadIndex].y;
vertex.z = vertexArray[threadIndex].z;
vertex.w = vertexArray[threadIndex].w;

● Problem: misaligned reads often come from structs

Common tool: struct of arrays

x y z w x y z w x y z w x y z w x y z w x y z w x y z w x y ...

float4 float4 float4 float4 float4 float4 float4 float4

float4 vertex;
vertex.x = vertexArray[threadIndex].x;
vertex.y = vertexArray[threadIndex].y;
vertex.z = vertexArray[threadIndex].z;
vertex.w = vertexArray[threadIndex].w;

● Problem: misaligned reads often come from structs

Common tool: struct of arrays

x y z w x y z w x y z w x y z w x y z w x y z w x y z w x y ...

float4 float4 float4 float4 float4 float4 float4 float4

float4 vertex;
vertex.x = vertexArray[threadIndex].x;
vertex.y = vertexArray[threadIndex].y;
vertex.z = vertexArray[threadIndex].z;
vertex.w = vertexArray[threadIndex].w;

Each read operation only
uses 25% of the cache
lines loaded into the core

● Solution: create a separate array for each member
variable such that all data is stored together

Common tool: struct of arrays

x ...

struct arrayOfFloat4 {
 float* x;
 float* y;
 float* z;
 float* w;
};

// instead of:
float value = array[i].x;

// write:
float value = array.x[i];

y ...

z ...

w ...

● Solution: create a separate array for each member
variable such that all data is stored together

Common tool: struct of arrays

x ...

...

// instead of:
float value = array[i].x;

// write:
float value = array.x[i];

Now reading the field utilises the
available bandwidth perfectly!

This trick also works for the CPU

● Usually the primary bottleneck of a kernel

● Common issues:
– Coalesced memory reads

– Atomic write contention

● Common tool: struct of arrays

● Common tool: shared memory

● Memory tips

Memory

● Shared memory: user managed L1 cache
– Roughly 100x faster than main memory
– Can be used to communicate between warps in a block
– Allocated on a per-block basis

● Use for:

– Storing intermediate results

– Storing data you will reuse many times

– Exchange values between warps in a block

Reducing memory latency with shared memory

● Problems:

– Number of blocks resident in the SM is in part determined
by the amount of shared memory each block requires

– Be aware of race conditions

Reducing memory latency with shared memory

Reducing memory latency with shared memory

__global__ void kernel(float* buffer, int length, int* total) {
 __shared__ int count = 0;
 __syncthreads();
 for(int i = threadIdx.x; i < length; i += blockDim.x) {
 if(buffer[i] > 50) {
 atomicAdd(&count, 1);
 }
 }
 __syncthreads();
 if(threadIdx.x == 0) {
 *total = count;
 }
}

● Usually the primary bottleneck of a kernel

● Common issues:
– Coalesced memory reads

– Atomic write contention

● Common tool: struct of arrays

● Common tool: shared memory

● Memory tips

Memory

● Vectorised loads
– If your data type is exactly 4, 8, or 16 bytes, the memory system

guarantees your data is loaded in one operation
– Can avoid struct of arrays when you know it is one of these sizes

● Use smaller data types
– For example: use short instead of int
– All data that does not need to go through the memory system

reduces the load on it

Memory

● Repetition: thread structure and limits

● Performance pitfalls
– Memory
– Suboptimal launch parameters
– Thread divergence
– Register spilling
– PCIe bandwidth

● Collective instructions

Today

● Repetition: thread structure and limits

● Performance pitfalls
– Memory
– Suboptimal launch parameters
– Thread divergence
– Register spilling
– PCIe bandwidth

● Collective instructions

Today

● A given kernel will require a certain number of registers
to run. The compiler determines how many are needed.

● Register spilling: temporarily write some register values
to memory
– Upside: can run more threads simultaneously
– Downside: more memory transactions

● The compiler will spill registers when it believes it will
improve overall performance

Register spilling

● How to resolve:

– Usually difficult to resolve once it occurs
– Identify parts of your kernel where many variables must

be kept simultaneously.
This can for example be caused by:

● Nested function calls (recursive calls are a red flag)
● Loops

– Consider recomputing values if doing so is not very
expensive

– Cut fields from structs that are unrelated to your kernel

Register spilling

● Repetition: thread structure and limits

● Performance pitfalls
– Memory
– Suboptimal launch parameters
– Thread divergence
– Register spilling
– PCIe bandwidth

● Collective instructions

Today

PCIe bandwidth

PCI Express bus
Gen 3 x16: 15.8 GB/s
Gen 4 x16: 31.5 GB/s

● Data copied from
and to GPU memory
needs to go over the
PCI Express bus.

● PCIe is slow
compared to system
and GPU memory
(RAM and VRAM)

● Avoid passing too
much data back and
forth

VRAM:
1.0 TB/s

RAM:
102.4 GB/s

Note: RAM and VRAM
numbers vary between
CPU and GPU models

V
R

A
M

R
A

M

Performance pitfalls
● Miscellaneous: do not use double

– Only supported in hardware on enterprise GPUs

– Slowdown of 32x on consumer cards (all double
precision operations are emulated in software)

– Often still slower than single precision operations on
enterprise cards (~2x, but varies across generations)

Performance pitfalls
● The most important thing when tackling performance

problems is:

Performance pitfalls
● The most important thing when tackling performance

problems is:

MEASURE
(and find a better algorithm)

● Repetition: thread structure and limits

● Performance pitfalls

● Collective instructions
– Shuffle instructions
– Shuffle instructions: example use cases
– Warp voting
– Warp voting: example use cases
– Warp reductions

Today

Shuffle instructions
● Exchange of values within a single warp

● Each thread provides one value

● Each thread reads a value provided by one of the threads

T __shfl_sync(unsigned mask, T var, int srcLane);

Where T is one of:

int, unsigned int,
long, unsigned long,
long long, unsigned long long,
float, double

Usually __activemask()

Shuffle instructions

0 31

● Example:

// Thread 10 executes (sends value 5):
int out = __shfl_sync(__activemask(), 5, 3);
// Thread 20 executes (receives value 5):
int out = __shfl_sync(__activemask(), 17, 10);
// Value of out in thread 20: 5

T __shfl_sync(unsigned mask, T var, int srcLane);

Lane 10
sends value 5

Lane 20 reads
value 5

Shuffle instructions

0 31

● Threads must be in the same block
● Threads must be in the same warp or cooperative group up to 32 threads in size

● Extremely cheap instruction
● Exact same behaviour would be extremely expensive on the CPU

● Reading from a thread that is not participating is undefined behaviour

● The _sync adjective implies that participating threads are first synchronised

Shuffle instructions
Four variants:

● Read from any thread (index specified by srcLane):
T __shfl_sync(unsigned mask, T var, int srcLane);

● Read from thread (laneid – delta):
T __shfl_up_sync(unsigned mask, T var, unsigned int delta);

● Read from thread (laneid + delta):
T __shfl_down_sync(unsigned mask, T var, unsigned int delta);

● Read from thread (laneid XOR laneMask):
T __shfl_xor_sync(unsigned mask, T var, int laneMask);

Shuffle instructions

● Read from thread (laneid XOR laneMask):
T __shfl_xor_sync(unsigned mask, T var, int laneMask);

● XOR flips a bit if one of the operands is 1
● laneMask effectively specifies which bits to flip

● Applying XOR twice gives you back your original value

→Becomes an exchange between two threads

Shuffle instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 4 1 3 1 2 1 1 2 2 5 4 8 7 3 3 7 8 7 7 9 1 4 5 5 9 7 1 3 8 3 2

int valueToSum = /* ... */;

Shuffle instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 4 1 3 1 2 1 1 2 2 5 4 8 7 3 3 7 8 7 7 9 1 4 5 5 9 7 1 3 8 3 2

11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5 11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5

int valueToSum = /* ... */;
sum += __shfl_xor_sync(__activemask(), valueToSum, 16);

Here: 0xFFFFFFFF

Shuffle instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 4 1 3 1 2 1 1 2 2 5 4 8 7 3 3 7 8 7 7 9 1 4 5 5 9 7 1 3 8 3 2

11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5 11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5

18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11

sum += __shfl_xor_sync(__activemask(), sum, 8);

Shuffle instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 4 1 3 1 2 1 1 2 2 5 4 8 7 3 3 7 8 7 7 9 1 4 5 5 9 7 1 3 8 3 2

11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5 11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5

18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11

39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26

sum += __shfl_xor_sync(__activemask(), sum, 4);

Shuffle instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11

39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26

70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67

sum += __shfl_xor_sync(__activemask(), sum, 2);

Shuffle instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11

39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26

70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67 70 67

137 137

sum += __shfl_xor_sync(__activemask(), sum, 1);

Shuffle instructions

__device__ int warpReductionSum(int threadValue) {
 int sum = __shfl_xor_sync(__activemask(), threadValue, 16);
 sum += __shfl_xor_sync(__activemask(), sum, 8);
 sum += __shfl_xor_sync(__activemask(), sum, 4);
 sum += __shfl_xor_sync(__activemask(), sum, 2);
 sum += __shfl_xor_sync(__activemask(), sum, 1);
 return sum;
}

Today
● Repetition: thread structure and limits

● Performance pitfalls

● Collective instructions
– Shuffle instructions
– Shuffle instructions: example use cases
– Warp voting
– Warp voting: example use cases
– Warp reductions

Shuffle instruction applications
● Warp-level reductions

The XOR «butterfly» reduction we saw before

Shuffle instruction applications
● Warp-level reductions
● Broadcasting

Reserve a block of 32 entries in a buffer:

int startIndex = -1;
if(threadIdx.x == 0) {
 startIndex = atomicAdd(&nextBufferIndex, 32);
}
int index = __shfl_sync(__activemask(), startIndex, 0);
buffer[index + threadIdx.x] = usefulComputations();

All threads read
from index 0

Shuffle instruction applications
● Warp-level reductions
● Broadcasting
● Bandwidth saving

for(int i = threadIdx.x; i < length; i += 32) {
 float value = buffer[i];
 float nextValue = buffer[i + 1];

 outputBuffer[i] = nextValue – value;
}

Neighbouring thread
has this value!

Shuffle instruction applications
● Bandwidth saving

– Plan of attack

32 elements 32 elements 32 elements ...

1. Read first block

For each block in buffer:
2. Read next block value

value

nextValue

3. Shuffle neighbour value

Important! thread
31 reads value of
nextValue instead!

4. assign nextValue to value value

Shuffle instruction applications
● Bandwidth saving

float value = buffer[threadIdx.x];
for(int i = threadIdx.x; i < length; i += 32) {
 float nextBufferValue = buffer[i + 32];
 float valueToSend = (threadIdx.x == 0)
 ? nextBufferValue : value;
 int laneToRead = (threadIdx.x == 31)
 ? 0 : threadIdx.x + 1;
 float nextValue = __shfl_sync(__activemask(),
 valueToSend, laneToRead);

 outputBuffer[i] = nextValue – value;
 value = nextBufferValue;
}

This halves required bandwidth
compared to the original version!

TODO:
bounds
check

Shuffle instruction applications
● Warp-level reductions
● Broadcasting
● Bandwidth saving
● Broadcast + bandwidth saving

for(int i = threadIdx.x; i < length; i += 32) {
 float threadValue = buffer[i];
 for(int j = 0; j < 32; j++) {
 float value = __shfl_sync(0xFFFFFFFF, threadValue, j);
 processValue(value);
 }
}

Useful when we want to do work
with an entire warp for each element

But notice: we are spending
registers to accomplish this.

Today
● Repetition: thread structure and limits

● Performance pitfalls

● Collective instructions
– Shuffle instructions
– Shuffle instructions: example use cases
– Warp voting
– Warp voting: example use cases
– Warp reductions

Warp Voting: ballot instruction
● Each thread in the warp sets one bit in a 32-bit integer

● Bit index corresponds to the lane index

● Only active threads vote

● Note: lane 0 corresponds to the least significant bit.

31 0

0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0

Lane ID

Warp Voting
● Warp voting instructions:

// Create a 32-bit integer where each lane sets one bit
unsigned int __ballot_sync(unsigned mask, bool predicate);

// Returns true if all threads vote true
bool __all_sync(unsigned mask, bool predicate);

// Returns true if one thread votes true
bool __any_sync(unsigned mask, bool predicate);

// Useful in conjunction: reverses a 32-bit integer
unsigned int __brev(unsigned int mask);

Today
● Repetition: thread structure and limits

● Performance pitfalls

● Collective instructions
– Shuffle instructions
– Shuffle instructions: example use cases
– Warp voting
– Warp voting: example use cases
– Warp reductions

● Now you’re thinking with warps

● Useful stuff

Warp voting use cases
● Stream filtering

x x x x x x x x x x x x x

Identify elements that should be removed

Write dense values
to a different array

Warp voting use cases
● Stream filtering

for(int i = threadIdx.x; i < length; i += 32) {
 float value = buffer[i];
 bool remove = criterion(value);
 unsigned int mask = __ballot_sync(0xFFFFFFFF, !remove);
 unsigned int sourceThread = __fns(mask, 0, threadIdx.x);
 if(sourceThread == 0xFFFFFFFF) {
 continue;
 }
 float condensedValue = __shfl_sync(0xFFFFFFFF, value, sourceThread);
 outputBuffer[bufferPointer + threadIdx.x] = condensedValue;
 if(threadIdx.x == 0) {
 bufferPointer += __popc(mask);
 }
}

Warp voting use cases
● Stream filtering

for(int i = threadIdx.x; i < length; i += 32) {
 float value = buffer[i];
 bool remove = criterion(value);
 unsigned int mask = __ballot_sync(0xFFFFFFFF, !remove);
 unsigned int sourceThread = __fns(mask, 0, threadIdx.x);
 if(sourceThread == 0xFFFFFFFF) {
 continue;
 }
 float condensedValue = __shfl_sync(0xFFFFFFFF, value, sourceThread);
 outputBuffer[bufferPointer + threadIdx.x] = condensedValue;
 if(threadIdx.x == 0) {
 bufferPointer += __popc(mask);
 }
}

Read value, determine if
it should be removed

Warp voting use cases
● Stream filtering

for(int i = threadIdx.x; i < length; i += 32) {
 float value = buffer[i];
 bool remove = criterion(value);
 unsigned int mask = __ballot_sync(0xFFFFFFFF, !remove);
 unsigned int sourceThread = __fns(mask, 0, threadIdx.x);
 if(sourceThread == 0xFFFFFFFF) {
 continue;
 }
 float condensedValue = __shfl_sync(0xFFFFFFFF, value, sourceThread);
 outputBuffer[bufferPointer + threadIdx.x] = condensedValue;
 if(threadIdx.x == 0) {
 bufferPointer += __popc(mask);
 }
}

Communicate about
which values to keep

Warp voting use cases
● Stream filtering

for(int i = threadIdx.x; i < length; i += 32) {
 float value = buffer[i];
 bool remove = criterion(value);
 unsigned int mask = __ballot_sync(0xFFFFFFFF, !remove);
 unsigned int sourceThread = __fns(mask, 0, threadIdx.x);
 if(sourceThread == 0xFFFFFFFF) {
 continue;
 }
 float condensedValue = __shfl_sync(0xFFFFFFFF, value, sourceThread);
 outputBuffer[bufferPointer + threadIdx.x] = condensedValue;
 if(threadIdx.x == 0) {
 bufferPointer += __popc(mask);
 }
}

We find the nth set bit in the
mask, there n is the lane index

Warp voting use cases
● Stream filtering

for(int i = threadIdx.x; i < length; i += 32) {
 float value = buffer[i];
 bool remove = criterion(value);
 unsigned int mask = __ballot_sync(0xFFFFFFFF, !remove);
 unsigned int sourceThread = __fns(mask, 0, threadIdx.x);
 if(sourceThread == 0xFFFFFFFF) {
 continue;
 }
 float condensedValue = __shfl_sync(0xFFFFFFFF, value, sourceThread);
 outputBuffer[bufferPointer + threadIdx.x] = condensedValue;
 if(threadIdx.x == 0) {
 bufferPointer += __popc(mask);
 }
} Move values from entire warp to the

first n threads, where n is the
number of values that should be
kept, and write them to a buffer

Today
● Repetition: thread structure and limits

● Performance pitfalls

● Collective instructions
– Shuffle instructions
– Shuffle instructions: example use cases
– Warp voting
– Warp voting: example use cases
– Warp reductions

Warp reductions
● Reductions implemented in hardware

– Added in RTX 3000 series cards

– Integer values only. For float use the XOR reduction shown before

unsigned __reduce_add_sync(unsigned mask, unsigned value);
unsigned __reduce_min_sync(unsigned mask, unsigned value);
unsigned __reduce_max_sync(unsigned mask, unsigned value);

int __reduce_add_sync(unsigned mask, int value);
int __reduce_min_sync(unsigned mask, int value);
int __reduce_max_sync(unsigned mask, int value);

unsigned __reduce_and_sync(unsigned mask, unsigned value);
unsigned __reduce_or_sync(unsigned mask, unsigned value);
unsigned __reduce_xor_sync(unsigned mask, unsigned value);

● Performance pitfalls

● Thread cooperation

Today

Tomorrow

● GPU profiling tools

	ÅPNINGSSIDE/TITTEL HER
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

