
Thread Lightly
Bart Iver van Blokland

● Repetition: performance pitfalls and
collective instructions

● Now you’re thinking with warps

● Useful stuff

● Demonstration: CUDA profiling tools

Today

● Even if you read only a single byte, its containing cache line
must be loaded into the core in its entirety

Coalesced memory reads

__global__ void kernel(int* array, int n) {
 int value = array[32 * threadIdx.x];
 // do stuff with value here
}

line 0 line 1 line 2 line 3 line 4 line 5 line 6 line 7 line 8 line 9

threadIdx 0
byte 0
index 0

threadIdx 1
byte 128
index 32

threadIdx 6
byte 768
index 192

Shuffle instructions
Four variants:

● Read from any thread (index specified by srcLane):
T __shfl_sync(unsigned mask, T var, int srcLane);

● Read from thread (laneid – delta):
T __shfl_up_sync(unsigned mask, T var, unsigned int delta);

● Read from thread (laneid + delta):
T __shfl_down_sync(unsigned mask, T var, unsigned int delta);

● Read from thread (laneid XOR laneMask):
T __shfl_xor_sync(unsigned mask, T var, int laneMask);

Shuffle instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 4 1 3 1 2 1 1 2 2 5 4 8 7 3 3 7 8 7 7 9 1 4 5 5 9 7 1 3 8 3 2

11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5 11 12 8 10 10 3 5 6 7 11 12 5 11 15 6 5

18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11

39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26

sum += __shfl_xor_sync(__activemask(), sum, 4);

Warp Voting: ballot instruction
● Each thread in the warp sets one bit in a 32-bit integer

● Bit index corresponds to the lane index

● Only active threads vote

● Note: lane 0 corresponds to the least significant bit.

31 0

0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0

Lane ID

Warp voting use cases
● Stream filtering

x x x x x x x x x x x x x

Identify elements that should be removed

Write dense values
to a different array

● Repetition: performance pitfalls and collective
instructions

● Now you’re thinking with warps

● Useful stuff

● Demonstration: CUDA profiling tools

Today

Putting it all together: prefix sum
● Each element in the list becomes the sum of

all elements up to that point
– For example, the prefix sum of the sequence:

11, 9, 4, 19, 16, 12, 3, 15, 11, 14

is:

11, 20, 24, 43, 59, 71, 74, 89, 100, 114

● Computing linearly requires fewest computations,
but parallel implementation can be much faster

CPU: 20.7s

GPU: 7.86ms

Putting it all together: prefix sum
● Let’s start with one warp:

float value = array[threadIdx.x];
for(int delta = 1; delta < 32; delta *= 2) {
 float sum = __shfl_up_sync(value, delta);
 if(threadIdx.x >= delta) {
 value += sum;
 }
}

Image by Scott Pakin - Own work, CC BY-SA 4.0

Putting it all together: prefix sum
● Approach: use 3 kernels

Kernel 1: compute partial sums
for all elements in each block

Kernel 2: compute partial sums at
a block level (can reuse kernel 1)

Kernel 3: add partial block sums
to each element within the block

Phase 1: prefix sum in block

4 6 3 8 9 3 8 5 8 3 3 8 9 1 6 4 5 8 8 4 2

“Warp” “Warp” “Warp” “Warp” “Warp”

Compute warp level prefix sums

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

● We’re launching one thread per
element in the input array

Phase 1: prefix sum in block

4 6 3 8 9 3 8 5 8 3 3 8 9 1 6 4 5 8 8 4 2

“Warp” “Warp” “Warp” “Warp” “Warp”

Compute warp level prefix sums

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

21 25 22 20 25

Store warp sums
in shared memory__syncthreads()

Phase 1: prefix sum in block

Compute prefix
sum for warp sums

__syncthreads()

21 25 22 20 25

21 46 68 88 113

Phase 1: prefix sum in block

“Warp” “Warp” “Warp” “Warp” “Warp”

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

Use prefix warp
sums to compute
partial sums

21 46 68 88 113

4 10 13 21 30 33 41 46 54 57 60 68 77 78 84 88 93 101 109 113 115

Phase 1: prefix sum in block

“Warp” “Warp” “Warp” “Warp” “Warp”

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

Use prefix warp
sums to compute
partial sums

21 46 68 88 113

4 10 13 21 30 33 41 46 54 57 60 68 77 78 84 88 93 101 109 113 115

One thread places the block’s total
partial sum into a main memory array

Phase 2: prefix sum of block sums

Repeat the first kernel
for the block sum array

Phase 3: prefix sum of block sums
● We now know the total sum up until the

first element of each block

● We have also computed the prefix
sums within each block

→ Final step: add the total sum to the
block to each element

38

4 10 13 21 30 33 41 46 54 57 60 68 77 78 84 88 93 101 109 113 115

42 48 51 59 68 71 79 84 92 95 98 106 115 116 122 126 131 139 147 151 153

Now what?
● Now that the kernel works, it’s time to

pull out the profiler and determine the
optimal launch parameters

● In this case only block dimensions

● We cannot adjust the amount of
shared memory as it depends on
the block size

● Repetition: performance pitfalls and collective
instructions

● Now you’re thinking with warps

● Useful stuff
– Built-in types

– Miscellaneous functions

● Demonstration: CUDA profiling tools

Today

● Many calculations involve multidimensional coordinates

● CUDA natively has types available for storing these

Built-in types

Type Signed version Unsigned version
char char[1-4] uchar[1-4]

short short[1-4] ushort[1-4]

int int[1-4] uint[1-4]

long long[1-4] ulong[1-4]

long long longlong[1-4] ulonglong[1-4]

float float[1-4] uchar[1-4]

double double[1-4] uchar[1-4]

Example:

uint3 a;
a.x = 5;

● CUDA also supports 16-bit float (half precision)

● Usually handled in pairs (type: __half2)

● Convert to and from with functions

● Can do arithmetic as usual, but this time applies
on 2 values at the same time

● Should mostly be used for normalised values (-1 to 1)

● Saves bandwidth

Built-in types: half precision

● Repetition: performance pitfalls and collective
instructions

● Now you’re thinking with warps

● Useful stuff
– Built-in types

– Miscellaneous functions

● Demonstration: CUDA profiling tools

Today

● CUDA has a number of utility functions available
– Either extremely efficient or implemented in hardware
– Builtin functions can be recognised by their __ prefix

Miscellaneous functions

Useful functions
Integer operations:

// Compute the sum of absolute differences: |x – y| + z
unsigned int __sad(int x, int y, int z);

// Compute the average of two integers
// Guaranteed to not overflow
unsigned int __uhadd(unsigned int x, unsigned int y);

Useful functions
Floating point operations:

// The remainder of a/b
float remainder(float a, float b);

// Computes sqrt(a*a + b*b + c*c)
float norm3df(float a, float b, float c);

// Calculate a x y + z
// Useful because it only rounds at the end
float ___fmaf_rz(float a, float y, float z);

Useful functions
Bit manipulation:

// Find the index with the first bit set to 1
int __ffs(int x);

// Count leading zeroes (starting from the least significant bit)
int __clz(int x);

// Find the position of the {offset}th bit set to 1
// Counting starts at index base
unsigned int __fns(unsigned int x, unsigned int base, int offset);

● Repetition: performance pitfalls and collective
instructions

● Now you’re thinking with warps

● Useful stuff

● Demonstration: CUDA profiling tools

Today

● GPU computing is cool because:
– More predictable than a CPU because threads are not

executed out of order

– Optimal performance is highly dependent on knowing
the details of the underlying architecture

– Cheap cooperation between threads means you tend
to work with threads in groups, which poses really
interesting modelling challenges

– When your code is well optimised, it can run orders of
magnitude faster than on a CPU

IMHO

End of the GPU block

	ÅPNINGSSIDE/TITTEL HER
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

