
Thread Lightly
Bart Iver van Blokland
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● Now you’re thinking with warps

● Useful stuff

● Demonstration: CUDA profiling tools

Today



● Even if you read only a single byte, its containing cache line 
must be loaded into the core in its entirety

Coalesced memory reads

__global__ void kernel(int* array, int n) {
    int value = array[32 * threadIdx.x];
    // do stuff with value here
}

line 0 line 1 line 2 line 3 line 4 line 5 line 6 line 7 line 8 line 9

threadIdx 0
byte 0
index 0

threadIdx 1
byte 128
index 32

threadIdx 6
byte 768
index 192



Shuffle instructions
Four variants:

● Read from any thread (index specified by srcLane):
T __shfl_sync(unsigned mask, T var, int srcLane);

● Read from thread (laneid – delta):
T __shfl_up_sync(unsigned mask, T var, unsigned int delta);

● Read from thread (laneid + delta):
T __shfl_down_sync(unsigned mask, T var, unsigned int delta);

● Read from thread (laneid XOR laneMask):
T __shfl_xor_sync(unsigned mask, T var, int laneMask);



Shuffle instructions
0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4  4  1  3  1  2  1  1  2  2   5   4   8   7   3   3   7   8   7   7   9   1   4   5   5   9   7   1   3   8   3   2  

11 12 8 10 10 3 5 6  7 11  12  5  11 15  6   5  11 12  8 10  10  3   5    6  7  11 12  5  11 15  6   5

18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11 18 23 20 15 21 18 11 11

39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26 39 41 31 26

sum += __shfl_xor_sync(__activemask(), sum, 4);



Warp Voting: ballot instruction
● Each thread in the warp sets one bit in a 32-bit integer

● Bit index corresponds to the lane index

● Only active threads vote

● Note: lane 0 corresponds to the least significant bit.

31 0

0   0  0  1   1  0  1  1   1  1  0   0  1  0   0  1  1   0  1  0   1  0  0   1  1  1   1  0  0   0  1  0

Lane ID



Warp voting use cases
● Stream filtering

x x x x x x x x x x x x x

Identify elements that should be removed

Write dense values 
to a  different array
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Putting it all together: prefix sum
● Each element in the list becomes the sum of 

all elements up to that point
– For example, the prefix sum of the sequence:

11, 9, 4, 19, 16, 12, 3, 15, 11, 14

is:

11, 20, 24, 43, 59, 71, 74, 89, 100, 114

● Computing linearly requires fewest computations, 
but parallel implementation can be much faster

CPU: 20.7s

GPU: 7.86ms



Putting it all together: prefix sum
● Let’s start with one warp:

float value = array[threadIdx.x];
for(int delta = 1; delta < 32; delta *= 2) {
    float sum = __shfl_up_sync(value, delta); 
    if(threadIdx.x >= delta) {
        value += sum;
    }
}

Image by Scott Pakin - Own work, CC BY-SA 4.0



Putting it all together: prefix sum
● Approach: use 3 kernels

Kernel 1: compute partial sums 
for all elements in each block

Kernel 2: compute partial sums at 
a block level (can reuse kernel 1)

Kernel 3: add partial block sums 
to each element within the block



Phase 1: prefix sum in block

4 6 3 8 9 3 8 5 8 3 3 8 9 1 6 4 5 8 8 4 2

“Warp” “Warp” “Warp” “Warp” “Warp”

Compute warp level prefix sums

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

● We’re launching one thread per 
element in the input array



Phase 1: prefix sum in block

4 6 3 8 9 3 8 5 8 3 3 8 9 1 6 4 5 8 8 4 2

“Warp” “Warp” “Warp” “Warp” “Warp”

Compute warp level prefix sums

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

21 25 22 20 25

Store warp sums 
in shared memory__syncthreads()



Phase 1: prefix sum in block

Compute prefix 
sum for warp sums

__syncthreads()

21 25 22 20 25

21 46 68 88 113



Phase 1: prefix sum in block

“Warp” “Warp” “Warp” “Warp” “Warp”

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

Use prefix warp 
sums to compute 
partial sums

21 46 68 88 113

4 10 13 21 30 33 41 46 54 57 60 68 77 78 84 88 93 101 109 113 115



Phase 1: prefix sum in block

“Warp” “Warp” “Warp” “Warp” “Warp”

4 10 13 21 9 12 20 25 8 11 14 22 9 10 16 20 5 13 21 25 2

Use prefix warp 
sums to compute 
partial sums

21 46 68 88 113

4 10 13 21 30 33 41 46 54 57 60 68 77 78 84 88 93 101 109 113 115

One thread places the block’s total 
partial sum into a main memory array



Phase 2: prefix sum of block sums

Repeat the first kernel 
for the block sum array



Phase 3: prefix sum of block sums
● We now know the total sum up until the 

first element of each block

● We have also computed the prefix 
sums within each block

→ Final step: add the total sum to the 
block to each element

38

4 10 13 21 30 33 41 46 54 57 60 68 77 78 84 88 93 101 109 113 115

42 48 51 59 68 71 79 84 92 95 98 106 115 116 122 126 131 139 147 151 153



Now what?
● Now that the kernel works, it’s time to 

pull out the profiler and determine the 
optimal launch parameters

● In this case only block dimensions

● We cannot adjust the amount of 
shared memory as it depends on 
the block size
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● Many calculations involve multidimensional coordinates

● CUDA natively has types available for storing these

Built-in types

Type Signed version Unsigned version
char char[1-4] uchar[1-4]

short short[1-4] ushort[1-4]

int int[1-4] uint[1-4]

long long[1-4] ulong[1-4]

long long longlong[1-4] ulonglong[1-4]

float float[1-4] uchar[1-4]

double double[1-4] uchar[1-4]

Example:

uint3 a;
a.x = 5;



● CUDA also supports 16-bit float (half precision)

● Usually handled in pairs (type: __half2)

● Convert to and from with functions

● Can do arithmetic as usual, but this time applies 
on 2 values at the same time

● Should mostly be used for normalised values (-1 to 1)

● Saves bandwidth

Built-in types: half precision
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● CUDA has a number of utility functions available
– Either extremely efficient or implemented in hardware
– Builtin functions can be recognised by their __ prefix

Miscellaneous functions



Useful functions
Integer operations: 

// Compute the sum of absolute differences: |x – y| + z
unsigned int __sad(int x, int y, int z);

// Compute the average of two integers
// Guaranteed to not overflow
unsigned int __uhadd(unsigned int x, unsigned int y);



Useful functions
Floating point operations: 

// The remainder of a/b
float remainder(float a, float b);

// Computes sqrt(a*a + b*b + c*c)
float norm3df(float a, float b, float c);

// Calculate a x y + z
// Useful because it only rounds at the end
float ___fmaf_rz(float a, float y, float z);



Useful functions
Bit manipulation: 

// Find the index with the first bit set to 1
int __ffs(int x);

// Count leading zeroes (starting from the least significant bit)
int __clz(int x);

// Find the position of the {offset}th bit set to 1
// Counting starts at index base
unsigned int __fns(unsigned int x, unsigned int base, int offset);
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● GPU computing is cool because:
– More predictable than a CPU because threads are not 

executed out of order

– Optimal performance is highly dependent on knowing 
the details of the underlying architecture

– Cheap cooperation between threads means you tend 
to work with threads in groups, which poses really 
interesting modelling challenges

– When your code is well optimised, it can run orders of 
magnitude faster than on a CPU

IMHO



End of the GPU block
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