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Approximate map of parallel systems
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The system classes

• Single processor
– Not very parallel, but has vector registers

• Multi-core
– 2-100 superscalar cpu cores

• Many-core
– 100+ simplified, but otherwise regular cpu cores

• DSM
– 1000s of superscalar cpu cores, distributed memory concealed by directory-based cache coherence built into the 

interconnection network

• Accelerators
– Graphics processors, FPGAs, signal processing units (and other application-specific circuitry)

• Clusters/MPP
– Local networks with nodes taken from one of the previous classes, explicit communication

• Grids
– International networks of connected clusters
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Matching parallel programming models
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These are not the only choices...

• ...but they’re the most popular at this time.
• We try to cover as much of the spectrum with as few 

tools as possible
• Hopefully, it’s given you a good starting point



  

6

Sequential computers

• We started out with the von Neumann computer
– It has a CPU and some memory
– The control path in the CPU fetches and decodes instructions
– The data path moves data between memory and registers, and carries out 

operations on them

• Programs and data are all in the same memory
– We distinguish between operations and operands by where we store them
– We covered the structure of a process image, and indicated that the important 

parts are the
• Text segment
• Data segment
• Stack
• Heap
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Improvements on the von 
Neumann model
• Since the von Neumann computer is only a model, actual 

hardware can support it without working exactly as it 
specifies

• Recognizing that its main bottleneck is that programs 
become long sequences of read-modify-write cycles, we 
can improve performance by second-guessing what is 
about to happen before it does

• We talked about
– Cache memory
– Instruction level parallelism
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Cache memory

• Anticipating that programs will exhibit
– Spatial locality (nearby values will be needed soon)
– Temporal locality (same values will be re-used soon)

we can speed up programs using small, low-latency 
memory buffers which
– Fetch neighboring values along with single addresses when they are 

accessed
– Keep them in the buffer as long as they are being re-used, unless the 

buffer overflows

• We briefly looked at loop tiling as a technique that can 
improve cache utilization
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Cache coherence

• With multiple cores, caches must maintain a coherent 
view of memory when it is updated

• We looked at
– Snooping (detecting updates from a shared part of the interconnect)

– Directory (detecting updates by marking memory banks when they 
are updated)
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Instruction level parallelism

• Instruction streams can be sped up in many ways, we 
looked at
– Pipelining 

• starting the next op. before the previous finishes

– Out-of-order execution
• dispatching independent ops. simultaneously

– Prefetching & branch prediction
• collecting statistics on where the next op. is likely to come from

– Vectorization
• using special ops. that do the same thing to several data elements 

simultaneously
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Vector operations

• When compilers don’t detect that vector operations 
can be used, we can write them by hand

• This necessitates using explicit CPU-specific 
operations
– Intrinsics are slightly more abstract than raw assembly code, but 

slightly less abstract than plain C

– We looked at SSE2 instructions for x86-compatible CPUs

– I mentioned Neon instructions for ARM-based CPUs

– Both are a little old, but our example only needed length-2 vectors

– Newer versions with longer vectors are available
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Flynn’s taxonomy

• This is a theoretical classification of parallel 
architectures:
– SISD (Single Instruction, Single Data – sequential computers)
– SIMD (Single Instruction, Multiple Data – vector computers)
– MISD (Multiple Instruction, Single Data – not in practical use)
– MIMD (Multiple Instruction, Multiple Data – threads & processes)

• Not a universal classification, but useful to know about
• We also mentioned two non-Flynn categories

– SPMD (Single Program, Multiple Data – MPI/OpenMP style code)
– SIMT (Single Instruction, Multiple Threads – CUDA style code)
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Shared and distributed memory

• When starting multiple control flows, we can do it by 
adding
– Processes

• No shared memory, require explicit message passing
• Work across networks of independent computers

– Threads
• Private stack memory, shared data and and heap
• Implicit messaging, require protection against race conditions (locks, 

atomic operations)
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Amdahl’s and Gustafson’s laws

• All programs have some inherently sequential fraction of their 
work, which we called f

• Speedup is the ratio of total sequential run time to total parallel 
run time

• With the same problem + more cores, we get Amdahl’s law
– Limit of speedup is 1/f

• With a problem that grows in proportion to the core count, we 
get Gustafson’s law
– Scaled speedup is f + p(1-f)

• We also mentioned parallel efficiency
– Derived from speedup
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MPI

• MPI parallelization works by making multiple 
processes
– Since they don’t share memory, they don’t have to be on the same 

computer

– Since they don’t share memory, communication becomes very 
explicit, with function calls to transport data between processes

• In order to simplify common problems, lots of extra 
abstractions are available
– We looked at point-to-point messaging, collective operations, 

derived data types, custom communicators, and parallel I/O
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MPI: Point-to-point operations

• Each process has a rank within a communicator
• Linear arrays of data can be sent from one rank to 

another when the sender knows the recipient’s rank
• They must be received with a matching call at the 

other end, where the receiver knows the sender’s rank
• All MPI programs can be written in terms of

– Init, Finalize (start and stop)

– Comm_rank, Comm_size (rank and total number of ranks)

– Send, Recv (pass messages from point to point)
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MPI: Communication modes

• The semantics of sending and receiving differ by the 
mode of the sending operation
– Standard

• Default, usually buffers small messages and blocks until completion for large 
messages

– Synchronized
• Always blocks until completion for all messages

– Ready
• Doesn’t buffer at all, but requires receive to be posted before send

– Buffered
• Allows programmer to specify the buffer space to use, instead of allocating 

new buffers for every message
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MPI: Border exchanges

• We’ve looked at how physics simulations that split their 
work into smaller, local areas require communication 
between the parts
– We saw it with the advection eq. in lecture

– You’ve seen it with the heat eq. in homework

• Local areas must be padded with a small border of 
values taken from their neighbors

• Pairwise exchanges of values come with a potential for 
deadlock
– Unified sendrecv or non-blocking send/recv calls mitigate this
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MPI: Collective operations

• We looked at some operations that involve all active 
ranks simultaneously
– Barrier

– Broadcast

– Scatter

– Gather

– Reduce

• The latter also have non-rooted versions
– Allreduce

– Allgather
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MPI: Performance analysis

• We looked at the Hockney model of communication cost, 
consisting of
– 1 latency per message sent (in seconds)
– (message size) x (inverse bandwidth) additional seconds of data traffic
– Gives estimate of communication cost when you count messages and 

sizes based on the program code

• Too simple for modern platforms
– Complicated interconnects have more than one type of links inside, each 

with their own latencies and bandwidths
– Hockney model must be adapted to the machine, but its basic 

observation still holds
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MPI: Derived data types

• Because sending and receiving requires linear 
arrays, indexing complicated patterns becomes tricky

• Derived data types give a notation for indexing and 
offsets which lets MPI handle it for us

• We looked at how to construct derived data types as
– Contiguous

– Structured (variable-length lists of elements)

– Vectors (regularly spaced lists of elements)

– Subarrays (regularly spaced lists in multiple dimensions)
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MPI: Communicators

• Additional communicators can be derived from 
MPI_COMM_WORLD
– We can split it into sub-groups, by including/excluding specific 

ranks

– We can structure it as a general graph, and find graph neighbors 
using the communicator

– We can structure it as a cartesian grid, and find coordinates + grid 
neighbors using the communicator
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MPI: Parallel I/O

• MPI-IO allows multiple ranks to open the same file 
simultaneously

• Derived data types can set a different view for each 
rank, to ensure that they don’t read/write in the same 
places

• Collective read/write operations allow all ranks to 
engage in I/O at the same time
– Saves us the trouble of appointing one of them to collect data from all 

the others
– Runs faster when supported by the file system
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Pthreads

• We looked at how pthreads share everything in a 
process image except for
– Private stack memory

– Private instruction counter

• Starting/stopping pthreads is connected to the 
call/return of a function

• They can produce race conditions unless the 
program logic prevents them from it
– There is no automatic protection of shared memory
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Pthreads operations

• Create
– Makes a new thread out of a function call, returns a handle

• Join
– Waits for the threaded function call to return, using the handle

• Mutex
– Locking variable that can only be acquired by one thread at a time

• Cond
– Signal mechanism attached to one or more threads waiting for a mutex

• Barrier
– Synchronization mechanism that can wait for N threads to arrive at the same 

point in the program
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OpenMP

• Programming model for the same operations as 
threads, but has
– Higher abstraction level (easier to write)

– Additional operations for things that are repetitive to write out 
explicitly

• Works by #pragma directives
– If you write it carefully, the program will still work as a sequential 

implementation even if OpenMP support is turned off

– Fork/join style parallelism wherever a lexical scope lies inside of a 
region marked with #pragma omp parallel
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OpenMP: mutual exclusion

• Simple assignment statements with commutative operations 
(probably) have hardware support for mutual exclusion
– X += 42,  Y = Y * Z,  Z = 64,  ...and such
– These can be made atomic with the #pragma omp atomic

directive

• More complicated blocks can be marked for mutual 
exclusion with #pragma omp critical
– This introduces locking/unlocking mechanisms behind the scenes

• We also have an explicit omp_lock_t variable type, which 
works like the pthread mutex constructs.
– Explicit function calls omp_lock_set and omp_lock_unset



  

28

OpenMP: worksharing

• Worksharing directives partition some section of code 
according to its function or data

• Functional decomposition: #pragma omp sections
• Data decomposition: #pragma omp for
• Exclusive access: #pragma omp single
• Worksharing directives are followed by a barrier, 

unless it is disabled with the nowait clause
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OpenMP: loop scheduling

• The paralle for directive divides the iteration space of 
a for loop among threads

• The parts of the iteration space are assigned 
according to a schedule
– Static (equal parts for everyone)

– Dynamic (list of equal-size parts, assigned as threads finish them)

– Guided (list of initially large, but successively smaller parts, 
assigned as threads finish them)
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OpenMP: tasks

• #pragma omp task creates a work-unit that can be 
assigned to a thread, and lists it for execution
– Threads pick up tasks from the list when they are available

• Tasks create dependency graphs when they have a 
specific order of execution

• Main benefit: tasks can create additional tasks without 
making assumptions about the size of the thread pool
– Nested parallelism is hard with worksharing directives, but easy with 

tasks
– Wonderful for divide&conquer algorithms
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