

1

TDT4200 Grand summary, pt.1

Jan.Christian.Meyer@ntnu.no

2

Approximate map of parallel systems

Single-processor

Multi-core

Many-core
Accelerators

DSM

Clusters/MPP

Grids

Scale

Heterogeneity
(Number of different parts to coordinate)

3

The system classes

• Single processor
– Not very parallel, but has vector registers

• Multi-core
– 2-100 superscalar cpu cores

• Many-core
– 100+ simplified, but otherwise regular cpu cores

• DSM
– 1000s of superscalar cpu cores, distributed memory concealed by directory-based cache coherence built into the

interconnection network

• Accelerators
– Graphics processors, FPGAs, signal processing units (and other application-specific circuitry)

• Clusters/MPP
– Local networks with nodes taken from one of the previous classes, explicit communication

• Grids
– International networks of connected clusters

4

Matching parallel programming models

Single-processor

Multi-core

Many-core
Accelerators

DSM

Clusters

Grids

Scale

Heterogeneity

CUDA

OpenMP
(and pthreads)

MPI

Vectors

5

These are not the only choices...

• ...but they’re the most popular at this time.
• We try to cover as much of the spectrum with as few

tools as possible
• Hopefully, it’s given you a good starting point

6

Sequential computers

• We started out with the von Neumann computer
– It has a CPU and some memory
– The control path in the CPU fetches and decodes instructions
– The data path moves data between memory and registers, and carries out

operations on them

• Programs and data are all in the same memory
– We distinguish between operations and operands by where we store them
– We covered the structure of a process image, and indicated that the important

parts are the
• Text segment
• Data segment
• Stack
• Heap

7

Improvements on the von
Neumann model
• Since the von Neumann computer is only a model, actual

hardware can support it without working exactly as it
specifies

• Recognizing that its main bottleneck is that programs
become long sequences of read-modify-write cycles, we
can improve performance by second-guessing what is
about to happen before it does

• We talked about
– Cache memory
– Instruction level parallelism

8

Cache memory

• Anticipating that programs will exhibit
– Spatial locality (nearby values will be needed soon)
– Temporal locality (same values will be re-used soon)

we can speed up programs using small, low-latency
memory buffers which
– Fetch neighboring values along with single addresses when they are

accessed
– Keep them in the buffer as long as they are being re-used, unless the

buffer overflows

• We briefly looked at loop tiling as a technique that can
improve cache utilization

9

Cache coherence

• With multiple cores, caches must maintain a coherent
view of memory when it is updated

• We looked at
– Snooping (detecting updates from a shared part of the interconnect)

– Directory (detecting updates by marking memory banks when they
are updated)

10

Instruction level parallelism

• Instruction streams can be sped up in many ways, we
looked at
– Pipelining

• starting the next op. before the previous finishes

– Out-of-order execution
• dispatching independent ops. simultaneously

– Prefetching & branch prediction
• collecting statistics on where the next op. is likely to come from

– Vectorization
• using special ops. that do the same thing to several data elements

simultaneously

11

Vector operations

• When compilers don’t detect that vector operations
can be used, we can write them by hand

• This necessitates using explicit CPU-specific
operations
– Intrinsics are slightly more abstract than raw assembly code, but

slightly less abstract than plain C

– We looked at SSE2 instructions for x86-compatible CPUs

– I mentioned Neon instructions for ARM-based CPUs

– Both are a little old, but our example only needed length-2 vectors

– Newer versions with longer vectors are available

12

Flynn’s taxonomy

• This is a theoretical classification of parallel
architectures:
– SISD (Single Instruction, Single Data – sequential computers)
– SIMD (Single Instruction, Multiple Data – vector computers)
– MISD (Multiple Instruction, Single Data – not in practical use)
– MIMD (Multiple Instruction, Multiple Data – threads & processes)

• Not a universal classification, but useful to know about
• We also mentioned two non-Flynn categories

– SPMD (Single Program, Multiple Data – MPI/OpenMP style code)
– SIMT (Single Instruction, Multiple Threads – CUDA style code)

13

Shared and distributed memory

• When starting multiple control flows, we can do it by
adding
– Processes

• No shared memory, require explicit message passing
• Work across networks of independent computers

– Threads
• Private stack memory, shared data and and heap
• Implicit messaging, require protection against race conditions (locks,

atomic operations)

14

Amdahl’s and Gustafson’s laws

• All programs have some inherently sequential fraction of their
work, which we called f

• Speedup is the ratio of total sequential run time to total parallel
run time

• With the same problem + more cores, we get Amdahl’s law
– Limit of speedup is 1/f

• With a problem that grows in proportion to the core count, we
get Gustafson’s law
– Scaled speedup is f + p(1-f)

• We also mentioned parallel efficiency
– Derived from speedup

15

MPI

• MPI parallelization works by making multiple
processes
– Since they don’t share memory, they don’t have to be on the same

computer

– Since they don’t share memory, communication becomes very
explicit, with function calls to transport data between processes

• In order to simplify common problems, lots of extra
abstractions are available
– We looked at point-to-point messaging, collective operations,

derived data types, custom communicators, and parallel I/O

16

MPI: Point-to-point operations

• Each process has a rank within a communicator
• Linear arrays of data can be sent from one rank to

another when the sender knows the recipient’s rank
• They must be received with a matching call at the

other end, where the receiver knows the sender’s rank
• All MPI programs can be written in terms of

– Init, Finalize (start and stop)

– Comm_rank, Comm_size (rank and total number of ranks)

– Send, Recv (pass messages from point to point)

17

MPI: Communication modes

• The semantics of sending and receiving differ by the
mode of the sending operation
– Standard

• Default, usually buffers small messages and blocks until completion for large
messages

– Synchronized
• Always blocks until completion for all messages

– Ready
• Doesn’t buffer at all, but requires receive to be posted before send

– Buffered
• Allows programmer to specify the buffer space to use, instead of allocating

new buffers for every message

18

MPI: Border exchanges

• We’ve looked at how physics simulations that split their
work into smaller, local areas require communication
between the parts
– We saw it with the advection eq. in lecture

– You’ve seen it with the heat eq. in homework

• Local areas must be padded with a small border of
values taken from their neighbors

• Pairwise exchanges of values come with a potential for
deadlock
– Unified sendrecv or non-blocking send/recv calls mitigate this

19

MPI: Collective operations

• We looked at some operations that involve all active
ranks simultaneously
– Barrier

– Broadcast

– Scatter

– Gather

– Reduce

• The latter also have non-rooted versions
– Allreduce

– Allgather

20

MPI: Performance analysis

• We looked at the Hockney model of communication cost,
consisting of
– 1 latency per message sent (in seconds)
– (message size) x (inverse bandwidth) additional seconds of data traffic
– Gives estimate of communication cost when you count messages and

sizes based on the program code

• Too simple for modern platforms
– Complicated interconnects have more than one type of links inside, each

with their own latencies and bandwidths
– Hockney model must be adapted to the machine, but its basic

observation still holds

21

MPI: Derived data types

• Because sending and receiving requires linear
arrays, indexing complicated patterns becomes tricky

• Derived data types give a notation for indexing and
offsets which lets MPI handle it for us

• We looked at how to construct derived data types as
– Contiguous

– Structured (variable-length lists of elements)

– Vectors (regularly spaced lists of elements)

– Subarrays (regularly spaced lists in multiple dimensions)

22

MPI: Communicators

• Additional communicators can be derived from
MPI_COMM_WORLD
– We can split it into sub-groups, by including/excluding specific

ranks

– We can structure it as a general graph, and find graph neighbors
using the communicator

– We can structure it as a cartesian grid, and find coordinates + grid
neighbors using the communicator

23

MPI: Parallel I/O

• MPI-IO allows multiple ranks to open the same file
simultaneously

• Derived data types can set a different view for each
rank, to ensure that they don’t read/write in the same
places

• Collective read/write operations allow all ranks to
engage in I/O at the same time
– Saves us the trouble of appointing one of them to collect data from all

the others
– Runs faster when supported by the file system

24

Pthreads

• We looked at how pthreads share everything in a
process image except for
– Private stack memory

– Private instruction counter

• Starting/stopping pthreads is connected to the
call/return of a function

• They can produce race conditions unless the
program logic prevents them from it
– There is no automatic protection of shared memory

25

Pthreads operations

• Create
– Makes a new thread out of a function call, returns a handle

• Join
– Waits for the threaded function call to return, using the handle

• Mutex
– Locking variable that can only be acquired by one thread at a time

• Cond
– Signal mechanism attached to one or more threads waiting for a mutex

• Barrier
– Synchronization mechanism that can wait for N threads to arrive at the same

point in the program

26

OpenMP

• Programming model for the same operations as
threads, but has
– Higher abstraction level (easier to write)

– Additional operations for things that are repetitive to write out
explicitly

• Works by #pragma directives
– If you write it carefully, the program will still work as a sequential

implementation even if OpenMP support is turned off

– Fork/join style parallelism wherever a lexical scope lies inside of a
region marked with #pragma omp parallel

27

OpenMP: mutual exclusion

• Simple assignment statements with commutative operations
(probably) have hardware support for mutual exclusion
– X += 42, Y = Y * Z, Z = 64, ...and such
– These can be made atomic with the #pragma omp atomic

directive

• More complicated blocks can be marked for mutual
exclusion with #pragma omp critical
– This introduces locking/unlocking mechanisms behind the scenes

• We also have an explicit omp_lock_t variable type, which
works like the pthread mutex constructs.
– Explicit function calls omp_lock_set and omp_lock_unset

28

OpenMP: worksharing

• Worksharing directives partition some section of code
according to its function or data

• Functional decomposition: #pragma omp sections
• Data decomposition: #pragma omp for
• Exclusive access: #pragma omp single
• Worksharing directives are followed by a barrier,

unless it is disabled with the nowait clause

29

OpenMP: loop scheduling

• The paralle for directive divides the iteration space of
a for loop among threads

• The parts of the iteration space are assigned
according to a schedule
– Static (equal parts for everyone)

– Dynamic (list of equal-size parts, assigned as threads finish them)

– Guided (list of initially large, but successively smaller parts,
assigned as threads finish them)

30

OpenMP: tasks

• #pragma omp task creates a work-unit that can be
assigned to a thread, and lists it for execution
– Threads pick up tasks from the list when they are available

• Tasks create dependency graphs when they have a
specific order of execution

• Main benefit: tasks can create additional tasks without
making assumptions about the size of the thread pool
– Nested parallelism is hard with worksharing directives, but easy with

tasks
– Wonderful for divide&conquer algorithms

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

