

1

TDT4200 Grand Summary, pt.2

Jan.Christian.Meyer@ntnu.no

2

GPU architecture

• The processing unit is the “Streaming Multiprocessor” (SM)
– 50-to-100ish in number per GPU

• Each SM contains 4 banks of 16-32 arithmetic units
(...depending on instruction, but 32 floating point units for sure)

• These don’t have individual instruction decoders
(...so they’re all expected to do the same thing)

• 32 CUDA threads in a group that is expected to share
each instruction is called a “warp”

– These are the GPU’s scheduling units
instruction

3

CUDA threads/cores

• NVidia likes to call each arithmetic unit a “CUDA core”
– We can’t really stop them, it’s their trademark

• They also like to call the work that is assigned to each one a
“CUDA thread”
– See comment above

• The combination of warps and 32-wide ALU blocks have more in
common with other definitions of thread and core
– It combines an instruction pointer and some vector operations

• Personally, I think they just like big numbers
– “16384 CUDA cores” sounds cooler than “128 processors”

4

Processing model

• At the top level, threads are arranged in a grid of thread
blocks

• The illustration assumes a 3x3 grid of 4x8 blocks
– The actual setup is configurable

– Also available in 1D and 3D

– Limited to x*y*z <= 1024 and z<= 64, though

blockIdx.y=1
blockIdx.x=2

threadIdx.y=2
threadIdx.x=6

5

Programming model

• CUDA C++ is a (proprietary) extension of C++
– It adds a few non-standard bits and bobs to the syntax

– It needs to generate object code for two different architectures: the
host (regular CPU) and the device (GPU)

– Therefore, it needs a dedicated compiler (‘nvcc’)

• Names declared with…
__host__ only go in the host code’s name table

__device__ only go in the device code’s name table

__global__ goes in both, making device functions callable from the
host code

6

Calling GPU functions

• Device functions are called ‘kernels’
(like so many other things)

• We have a type for specifying grid and block sizes
– dim3 someSize(16,2); ← 1,2,3D coord. space size

• Kernel invocation:
my_kernel <<< gridSize, blockSize >>> (arg1, arg2);

starts

__global__ void my_kernel (float arg1, int arg2);

on the graphics processor

• If you only want 1D sizes, you can just use scalars instead
of dim3-s

7

Inside the kernel

• The kernel is invoked in (gridSize x blockSize)
instances

• The variables blockIdx.{x,y,z} and threadIdx.{x,y,z}
contain the x/y/z coordinates of each invocation, thus
allowing us to distinguish them from each other

(and thus, make them work on separate data elements)

• Technically, we can use the coordinates in the all the
same ways as ‘rank’ or ‘tid’ variables for processes
and threads… BUT:

8

Warp divergence

• The thread blocks are scheduled onto the warp-
capable SM units

(Aside: this means they work best when they have a size that
multiplies to 32, but it’s not a requirement)

• They all run the same instruction at any given time,
vector-style

• If threads within a warp take different branches of a
conditional, things slow down

9

Warp divergence

Pretend we’re in 1D, for simplicity
__device__ float diverging_kernel (*results) {

int my_id = threadIdx.x;

// Both of these branches will run on all threads

if ((my_id % 2) == 0) {

results[my_id] = 3.14; // Only even-index ids work, odds idle

} else {

results[my_id] = 2.71; // Only odd-index ids work, evens idle

}

}

• This gets us ½ the speed compared to execution with
individual instruction pointers

10

Synchronization

• There’s a barrier called __syncthreads()
• It only synchronizes threads in the same block
• To the best of my knowledge, the only way to

synchronize the whole grid is to end the kernel
function and make the host wait for its completion
– Collaborative groups admit global synch. since CUDA 9

11

Memory

• Ideally, kernel-local variables fit in a register file on the SM
• If they don’t, there’s a small amount of additional memory to spill

register values into
– This does the job of the run-time stack on the host CPU

• There’s a large, global memory that all threads in the grid can
use
– That is your card’s video RAM

• There are smaller, faster local memories associated with the SMs
– Variables declared as __shared__ go here
– Kind of like cache from a chip-design point of view, but it’s explicitly programmed,

so I’m inclined to call it a scratchpad instead

12

The roofline model

• Estimates whether a program’s performance is
restricted by memory speed or compute operations

• Graphical model
– X axis is arithmetic/operational intensity

– Y axis is operations per second

• Obtaining op. intensity:
– Count operations and data elements they apply to in the program

13

The roofline model

• Inverse memory bandwidth (in seconds/byte) is gradient of diagonal line
– Measure, or find it in the computer spec. sheet

• Peak operations rate is level of horizontal line
– Measure, or find it in the computer spec. sheet

CPU bottleneck

Memory bottleneck

Op. intensity

Perf. Compute-bound region

Mem-bound
region

14

High-level overview

• Programming models
– MPI
– Pthreads
– OpenMP
– Vector intrinsics
– CUDA

• Performance models
– Amdahl (strong scaling)
– Gustafson (weak scaling)
– Hockney (communication)
– Roofline (local computing speed)

15

High-level overview

• Architectural elements
– von Neumann model

– Cache memory

– Cache coherence (snooping / directory)

– ILP: pipelining, OO execution, prefetching/branch pred., vectors

– Shared vs. Distributed memory systems

– GPU/SIMT execution (as seen from CUDA)

(Problem models:

We’ve had a quick look at how to solve differential equations with Finite Difference
methods)

16

That’s it from me

• You should now be equipped to design programs for
(almost) any size of parallel computer
– We only had time for 1 method per system class, but that’s ok

• I hope you’ve had some fun between the
segmentation faults

• Don’t hesitate to contact me if you want to talk about
HPC in any other context
– I’m always interested in this stuff, you don’t have to be taking a class

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

