
TDT4200 Parallel computing
Exercise setup

This document contains information on how to access and use the Snotra
cluster, how to install a programming environment for Windows, and how to
install a C compiler. Other dependencies needed for solving the programming
tasks in this course will be explained as part of the problem sets. Do not
hesitate to contact us if you encounter any problems so we can assist you in
setting things up.

Using the Snotra cluster
All TDT4200 students have access to the Snotra cluster via SSH. To use this
cluster you can follow the procedure described below.

Connecting to the cluster
If you are on campus, you can connect to the server by running

ssh <username>@snotra.idi.ntnu.no

If you are outside campus, you have to jump through a bastion host to connect
to the server by running

ssh -J <username>@login.stud.ntnu.no <username>@snotra.idi.ntnu.no

When you connect to the cluster you should automatically be allocated a
shell on an available server. This ensures that the resources you need for the
programming tasks are scheduled and dedicated to you as a user. The shell
will terminate after 2 hours, at which point you can simply request a new shell
to continue working (assuming there is no queue). Each user gets a maximum
of 1 shell.

If you are an employee at NTNU, you might end up on a server called
snotra-login. This is the login node for the Slurm cluster. The login node is a
simple virtual machine and no work should be done on this node. You will be
allocated the same shell as regular students by running

1



connect tdt4200

Working on the cluster
Viewing and canceling jobs

You can run the show-jobs and stop-jobs commands via SSH to view or
cancel any active jobs in the case you want to be allocated a new shell, but did
not properly exit your previous shell.

Show a list of your active jobs by running

ssh <username>@login.stud.ntnu.no <username>@snotra.idi.ntnu.no show-jobs

or

ssh <username>@login.stud.ntnu.no <username>@snotra.idi.ntnu.no stop-jobs

Stop your active jobs by running

ssh <username>@login.stud.ntnu.no <username>@snotra.idi.ntnu.no stop-jobs -f

Note that you still have to pass the -J flag to the ssh command if you are
outside campus.

Working with files

The default home directory on the servers is the official NTNU home directory.
This is a directory that you can mount locally on your own machine, so that
you can edit files locally and make them available on the remote server to
compile and run. NTNU provides guides on how to connect your home
directory depending on what OS you are running:

• Linux

• Mac OS

• Windows

You should use the sambaad.stud.ntnu.no network directory.

Server specifications

The current list of nodes (subject to change) consists of Selbu and Oppdal
with 20 × Nvidia T4 GPUs, 2 × Xeon Gold 6230 and 376GB RAM each.
Each user is allocated 4 cores, 8GB RAM and 1 GPU for PS1-PS3, and 2
cores, 8GB RAM and 1 GPU for PS4-PS6.

2

https://innsida.ntnu.no/wiki/-/wiki/English/Connect+to+your+home+directory+via+Linux
https://innsida.ntnu.no/wiki/-/wiki/English/Connect+to+your+home+directory+via+Mac+OS+X
https://innsida.ntnu.no/wiki/-/wiki/English/Connect+to+your+home+directory+via+Windows


Setting up a programming environment for
Windows

Installing WSL
For completing the programming tasks in this course on a Windows machine,
we strongly recommend that you use WSL (Windows Subsystem for Linux).
Use this guide to install WSL. It installs Ubuntu Linux by default.
After installing WSL, you can install the programming tools you need and
compile programs inside of the WSL Terminal.

Working with files
The files you want to compile will need to be placed in a location that is
accessible to the compiler. To do this, execute "explorer.exe" inside of the
terminal, as shown here. This will open a Windows Explorer window of the
folder in which you reside in the terminal. Move files into this folder to make
them available inside the WSL Terminal. To view and navigate the folders
interactively in the WSL Terminal, we recommend learning some basic
commands. The first 3 commands in this list are useful for the scope of this
course.

Workflow
A basic workflow for C programming with WSL can be to move the handout
code for a problem set into the WSL folder described above, open these files
using some code editor, e.g., Visual Studio Code, and then write your
program. When you want to compile your program you can run gcc or use the
Makefile commands available in the handout code for the problem sets directly
in the WSL terminal. For convenience, you can also tie WSL and Visual
Studio Code together using this guide.

Installing Homebrew for Mac OS
We recommend that you use Homebrew for package management if you are
working on a Mac. Homebrew can be installed by following this guide.
Commands needed to use Homebrew can be found in the documentation.

3

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.howtogeek.com/426749/how-to-access-your-linux-wsl-files-in-windows-10/
https://www.hostinger.com/tutorials/linux-commands
https://code.visualstudio.com/
https://code.visualstudio.com/docs/remote/wsl
https://docs.brew.sh/Installation
https://docs.brew.sh/Manpage


Installing a C compiler

Linux
Update the system:

sudo apt update && sudo apt upgrade -y

Install the gcc compiler:

sudo apt install gcc -y

Check the gcc installation (should print the version of the gcc compiler that is
installed):

gcc --version

Mac OS
Update Homebrew:

brew update

Install the gcc compiler using Homebrew:

brew install gcc

Check the gcc installation (should print the version of the gcc compiler that is
installed):

gcc --version

Windows (in WSL terminal)
Update the system:

sudo apt update && sudo apt upgrade -y

Install the gcc compiler:

sudo apt install gcc -y

Check the gcc installation (should print the version of the gcc compiler that is
installed):

gcc --version

4


