
TDT4200 Parallel
programming
PS4
Maren Wessel-Berg & Claudi Lleyda Moltó
October 2023

Practical information
Published: 03/10/23
Deadline: 10/10/23 at 22:00
Evaluation: pass/fail

▶ Completing the problem set ismandatory.
▶ The work must be done individually and without helpfrom anyone but the TDT4200 staff.
▶ Reference all sources found on the internet orelsewhere.
▶ The requirements, and how and what to deliver isexplained in the problem set description found onBlackBoard.
▶ Start the exercises early!

Where can you get help with the assignment?

▶ Recitation lecture: introduction to the problem set
(Today)Slides will be made available online.

▶ TA hours: ask questions in person
Friday, October 6th, 10:00–12:00 in CybeleMonday, October 9th, 13:00–15:00 in Cybele

▶ Piazza: question forum
Ask questions any time (but give us time to answer).Select the ps4 folder for questions related to thisproblem set.Do not post full or partial solutions!

https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://piazza.com/class/llxyp287tqn7nq

pthreads and OpenMP

▶ We will discuss two approaches for parallelizing codefor a single machine.
▶ pthreads is a low-level API that allows us to spawn andmanage threads from within a process.
▶ OpenMP is a high-level interface for parallelizing code,providing many useful portable constructs.

▶ We can easily share the computation domain amongthreads, meaning we do not need to worry abouttransferring the border across processes!

Programming with pthreads

Thread handler
▶ The type pthread_t is an abstract thread handler,storing a unique thread identifier.
▶ We need one instance for each simultaneous threadthat we want to launch.
▶ pthreads will use the instances of pthread_t toorchestrate the threads.

Creating and joining threads
Starting a thread
▶ We can start a new thread by calling pthread_create.

▶ pthread_t *thread, a pointer to a thread handler. Thiswill create a new, currently unused, thread ID.
▶ pthread_attr_t *attr, a pointer to a structuredetermining thread attributes. We can ignore it bysetting it to NULL.
▶ void *(*start_routine)(void *), a pointer to afunction that takes in a void * and returns a void *. Thecreated thread will immediately run this function withthe input provided in the next argument, arg.
▶ void *arg Input to the provided start routine in theprevious argument, start_routine.

Joining threads
▶ We can wait for a thread to terminate by calling

pthread_join.

Working with threads
#include <pthread . h>
#include <stdio . h>
#define N 17
void *func (void *arg) {

char *c = arg ;p r in t f ("%c " , *c) ;
return NULL ;}

int main (void) {pthread_t th [N] ;
char s t r [N + 1] = "Race condit ion : (" ;
for (int i = 0 ; i < N; i ++)pthread_create (th + i , NULL , func , s t r + i) ;
for (int i = 0 ; i < N; i ++)pthread_join (th [i] , NULL) ;p r i n t f (" \n") ;}

Synchronizing threads

Thread barriers
▶ We can initialize a pthread_barrier_t by calling

pthread_barrier_init, and specifying a count.
▶ A pthread_barrier_t will stop threads that wait on it bycalling pthread_barrier_wait, and keep track of howmany are waiting, until the predefined count has beenreached.
▶ We can destroy a barrier with pthread_barrier_destroywhen we are done using it.

Programming with OpenMP

▶ OpenMP is a high-level interface for writing parallelcode.
▶ We use #pragma omp directives to tell the compilerwhere to parallelize our code.

▶ We can use #pragma omp parallel to instruct OpenMPto use as many threads as it wants.
▶ We can use #pragma omp for to parallelize a loop.

Example
#pragma omp para l l e l for
for (int i = 0 ; i < N; i ++)a [i] = b[i] + c [i] ;

Parallel regions

▶ We can avoid creating and destroying threads for every
#pragma omp instruction unnecessarily.

▶ Just encase multiple lines of code in a block.
Example
#pragma omp para l l e l{ #pragma omp for

for (int i = 0 ; i < N; i ++)a [i] = b[i] * c [i] ;
#pragma omp for
for (int i = 0 ; i < N; i ++)c [i] = a [i] + b[i] ;}

Reduction

▶ When performing a reduction operation, we can tellOpenMP how to parallelize it.
▶ We must specify what operation we are using, and onwhat variable we are reducing.

Example
#pragma omp para l l e l for reduction (+ : r)
for (int i = 0 ; i < N; i ++)r += a [i] ;

Barriers
▶ We can also use barriers in OpenMP code!
▶ We just need to signal where we want the barrier tooccur.

Example
#pragma omp para l l e l{ #pragma omp for

for (int i = 0 ; i < N; i ++)a [i] += b[i] ;
#pragma omp barr ier
#pragma omp for
for (int i = 0 ; i < N; i ++)b [i] += a [N− i] ;}

Master thread
▶ We can specify an instruction to only be executed by themaster thread.

Example
#pragma omp para l l e l{ #pragma omp for

for (int i = 0 ; i < N; i ++)a [i] += b[i] ;#pragma omp masterw r i t e _ t o _ f i l e (a) ;
#pragma omp for reduction (+ : sum)
for (int i = 0 ; i < N; i ++)sum += a [i] ;#pragma omp masterp r in t f ("%d\n" , sum) ;}

