
TDT4200 Parallel
programming
PS6
Maren Wessel-Berg & Claudi Lleyda Moltó
October 2023

Practical information
Published: 24/10/23
Deadline: 7/11/23 at 22:00
Evaluation: Graded (10%)

▶ Completing the problem set ismandatory and it willcount towards 10% of your final course grade.
▶ The work must be done individually and without helpfrom anyone but the TDT4200 staff.
▶ Reference all sources found on the internet orelsewhere.
▶ The requirements, and how and what to deliver isexplained in the problem set description found onBlackBoard.
▶ Start the exercises early!

Where can you get help with the assignment?

▶ Recitation lecture: introduction to the problem set
(Today)Slides will be made available online.

▶ TA hours: ask questions in person
Friday, October 27th, 10:00–12:00 in CybeleMonday, October 31st, 13:00–15:00 in CybeleFriday, November 3rd, 10:00–12:00 in CybeleMonday, November 6th, 13:00–15:00 in Cybele

▶ Piazza: question forum
Ask questions any time (but give us time to answer).Select the ps6 folder for questions related to thisproblem set.Do not post full or partial solutions!

https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://piazza.com/class/llxyp287tqn7nq

Implicit method to solve the heat equationConsider the 2D heat equation
∂u

∂t
= K

(
∂2u

∂x2
+

∂2u

∂y2

)
.

We can discretize it as
uki,j − uk−1

i,j

∆t
= K

(
uki−1,j − 2uki,j + uki+1,j

∆x2
+

uki,j−1 − 2uki,j + uki,j+1

∆y2

)
= K

(
uki−1,j + uki+1,j + uki,j−1 + uki,j+1 − 4uki,j

∆x2

)
,

where we have assumed ∆x = ∆y. By isolating uk−1
i,j we get

uk−1
i,j =

(
1+4K

∆t

∆x2

)
uki,j−K

∆t

∆x2
(
uki−1,j+uki+1,j+uki,j−1+uki,j+1

)
.

Implicit method to solve the heat equationWe can clean up the expression
uk−1
i,j =

(
1+4K

∆t

∆x2

)
uki,j−K

∆t

∆x2
(
uki−1,j+uki+1,j+uki,j−1+uki,j+1

)
into

uk−1
i,j = Duki,j +A

(
uki−1,j + uki+1,j + uki,j−1 + uki,j+1

)
by setting

D = 1 + 4K
∆t

∆x2
, A = −K

∆t

∆x2
.

From here we get that the equality we are looking for is
uki,j =

uk−1
i,j −A

(
uki−1,j + uki+1,j + uki,j−1 + uki,j+1

)
D

.

This is what we use, in conjunction with the Red/BlackGauss-Seidel method, to solve our equation!

Red/Black Gauss-Seidel algorithm

Intuitive notion
▶ For this exercise we will revisit the Red/BlackGauss-Seidel implicit solver from PS1.
▶ The Gauss-Seidel algorithm improves the convergencespeed of the Jacobi algorithm by updating the calculatedvalues as we iterate.
▶ Unfortunately, this introduces a data dependency,heavily hindering parallelization potential.
▶ The Red/Black Gauss-Seidel algorithm dampens thedata dependency by performing the calculations in anspecific order.

Red/Black Gauss-Seidel algorithm
To calculate the values for the selected node we only needdata from its four direct neighbours (and the node itself).

Red/Black Gauss-Seidel algorithm
We can calculate the values for all the black nodesindependently from each other, without any data races.

Red/Black Gauss-Seidel algorithm
The same is true for the red nodes!

Gauss-Seidel algorithm exampleConsider the linear system 3 1 0
2 8 1
−1 −2 4

xy
z

 =

26
3

From which we get

xk+1 = (2− yk)/3

yk+1 = (6− 2xk+1 − zk)/8

zk+1 = (3 + xk+1 + 2yk+1)/4.

If we chose our first approximation to be (0, 0, 0) we get
x1 = (2− 0− 0)/3 = 0.6667

y1 = (6− 2 ∗ 0.6667− 0)/8 = 0.5833

z1 = (3 + 0.6667 + 2 ∗ 0.5833)/4 = 1.2083.

Gauss-Seidel algorithm exampleWe can continue
x2 = (2− 0.5833)/3 = 0.4722

y2 = (6− 2 ∗ 0.4722− 1.2083)/8 = 0.4809

z2 = (3 + 0.4722 + 2 ∗ 0.4809)/4 = 1.1085,

from which we get
x3 = (2− 0.4809)/3 = 0.5064

y3 = (6− 2 ∗ 0.5064− 1.1085)/8 = 0.4848

z3 = (3 + 0.5064 + 2 ∗ 0.4848)/4 = 1.1190,

and lastly
x4 = (2− 0.4848)/3 = 0.5051

y4 = (6− 2 ∗ 0.5051− 1.1190)/8 = 0.4839

z4 = (3 + 0.5051 + 2 ∗ 0.4839)/4 = 1.1182,

where we begin to reach convergence.

Cooperative groups
Synchronization
▶ We can perform the calculations pertaining to squaresof a certain color in parallel in the GPU, but we mustensure that we wait for all the calculations under thatcolor to be complete before starting the next color.
▶ This means we must synchronize our tasks in between.
▶ Typically, we can only control one block at a time, but wewill require many blocks to execute at every time step.
▶ We could artificially synchronize our calculations bylaunching two different kernels, one after the other, butthat would be inefficient.

compute_red_kernel<<<grid , blocks >>>(domain) ;/ / A r t i f i c a l synccompute_black_kernel <<<grid , blocks >>>(domain) ;

Cooperative groups

Grid synchronization
▶ Fortunately, we can synchronize an entire grid of blocksat once using cooperative groups.

namespace cg = cooperative_groups ;
void __g loba l__ kernel (r ea l _ t *domain){ cg : : grid_group gr id = cg : : th i s _g r id () ;compute_red (domain) ;gr id . sync () ;compute_black (domain) ;}

▶ No such thing as a free lunch :(It has some caveats.

Cooperative groups

Grid synchronization considerations
This approach requires all blocks to be present in the GPU
at the same time.
▶ Meaning, we cannot launch a grid with more blocksthan our GPU can physically fit.
▶ You will have to look at the specs of your GPU to figureout this limit (or query-it during runtime).
▶ For this problem set, we have set the default domainsize to be small enough to fit in the GPUs available toyou in the cluster.

Cooperative groups

Grid synchronization considerations
The grid.sync() function must be reached by all threads inthe grid, even those you may have wished to discard.
▶ No more early returns.

void __g loba l__ kernel (){ cg : : grid_group gr id = cg : : th i s _g r id () ;
i f (is_out_of_bounds ())

return ;
do_stuff () ;gr id . sync () ; / / <− Th i s w i l l f a i l !other_s tuf f () ;}

Cooperative groups
Grid synchronization considerations
The kernel launch instruction will require different, moreverbose, syntax. You must use
void *args [] = {(void *) &arg1 ,(void *) &arg2 ,(void *) &arg3 ,(void *) &arg4 ,} ;cudaLaunchCooperativeKernel ((void *) kernel ,grid , blocks , args) ;
instead of
kernel <<<grid , blocks >>>(arg1 , arg2 , arg3 , arg4) ;
which will crash when trying to run grid.sync().

Your tasks

Implementation details
Most tasks in this problem are fairly similar to the onesfound in PS5.
▶ Keep in mind that for this approach you do not need aduplicate of the simulation domain in memory, aseverything is done in-place.
▶ This is also reflected in the sequential implementation,so you can use that as a reference.

Your tasks
Implementation details
The time_step kernel will have to be rewritten, both toaccommodate the grid synchronization and the newalgorithm.
▶ Be careful with early returns for threads with indicesoutside the simulation domain! You will have to find analternative to this.
▶ Remember that all threads in the grid must reach thesynchronization instruction.

The kernel launch instruction will also need to change withrespect to the last problem set, to accommodate for thecooperative threads syntax.
▶ You will need to think about how to send argumentssuch as N, M and dt to the GPU with this syntax.

