TDT4200 Parallel
programming

Maren Wessel-Berg

August 2023

@ NTNU

Main focus of this introduction

» The basic syntax of C looks a lot like other statically
typed languages like Java.

» Will cover: Hello world example and printf.
» Will not cover: If-loops, for-loop, switch statements,
functions, etc.
» Important concepts for working with C code.
> Memory regions.
» Scope and lifetime of variables.
» Dynamic memory management.
» Handling pointers, structs and arrays.
» The preprocessor and macros

Note: Some of the slides are based on other courses around the world—
Stanford, University of Edinburgh, NTNU, etc.

@ NTNU

Hello World

» Install gcc or another C-compiler.
» Write some code in hello.c:
#include <stdio.h>
int main (int argc, char** argv) {
printf ("Hello_world\n");
return O;
}
» Inside of a terminal/shell:

gcc hello.c -o hello
./ hello

@ NTNU

printf

printf ("These %d_+ %If _%s.\n", 3, 1.0,
"symbols_are_mostly _what_you_need");

> 7d (digit) for integers

» %1f (long float) for doubles
» %s for strings

» \n for newline

@ NTNU

Philosophy of C

» Assumes competent programmers who deserve full
freedom and access.

» With great power comes great chance of weird bugs, so
be careful.

@ NTNU

Memory regions

» Stack
SP Stack For data local to functions.
Managed by the compiler.
+ » Heap
T For dynamically allocated
data.
G Managed by the programmer
(in C) or by the system (in
Java).
Static data » Static
For data with program
PC = Instructions lifetime.
Initialised when the program
starts.

@ NTNU

Memory regions and memory management

> InJava

> All objects are dynamically allocated in the heap.

» Dynamically allocated objects in the heap are recycled
automatically by the garbage collector when they are
no longer needed.

» InC

» No objects, only data structures in all 3 memory regions.

» Some data structures are statically allocated, others
dynamically.

» Programs must explicitly manage dynamically
allocated data structures in the heap.

» Explicit memory management is a major source of error,
particularly when the programmer forgets to free the
memory, which results in memory leaks.

@ NTNU

Stack and local variables

» When you have some statements in C, a { basic block }
defines a local scope for the variables.

{
int a =1, b= 0;

{
int a = 64;
b =a- 32
}

printf ("a_is_%d,_b_is_%d\n", a, b);
}

» aandb live on the stack and disappear when the
local scope is exited.

» This code will print“ais 1, b is 32”; the a declared inside
the basic block shadows the exterior a, but is gone
when the block ends.

@ NTNU

Static data region and global variables

#include <stdio.h>

int x = 32;

int main (int argc, char **argv) {
print_x_value ();

}

void print_x_value (void

) A
printf ("x_is_%d\n", x);

}

» This works because x lives in the static data region of
memory and is in the object code’s name table.

> x has lifetime of the program and scope of the file.

@ NTNU

Pointers, in principle
Before we get into explicit memory management, we need
some notation for writing about memory.

» A C pointer is a variable that holds the memory
address of a piece of data.

» You can examine its value, but you will only see a Large
Meaningless Integer, which isn't very informative.
» The idea is to have the value of one memory location
coincide with the index of another memory location:
Location | 0x0 [0x1|0x2|0x3|0x4|0x5
Value 0x2 20 0xd 12 64 42
» Location 0 x 2 contains a pointer, and it points at the
value 42 (in location 0 x 5)
» Location 0 x 0 contains a pointer-to-a-pointer, it points at
the value 0 x 5 (in location 0 x 2), which in turn points at
the value 42 (in location 0 x 5)
» We could continue...

@ NTNU

Pointers, in practice

» The concept itself is not too bad, but manipulation of
pointers can get tricky:

double value = 0.0; //
double *ptr1; //
double **ptr2; //
ptr1 = &value; //
ptr2 = &ptr1; /7
value = 3.14; //
*ptr1 = 2.71; /7
*kptr2 = 3.14; /7

A double-precision scalar
A pointer to a double-precision scalar
A pointer-to-a-pointer to a double-precision scalar

Get the address of our 0.0-valued variable
And get the address of its address

Assign with 0 levels of indirection
Assign with 1 level of indirection
Assign with 2 levels of indirection

Note that all the assignments change the same memory
location, e.g., after xptr1=2.71, printing value will give you
2.71.

Pointers, in practice

» Mind the lifespan of what you find the & of- if it lives on
the stack, it will disappear with the block it lives in.

» In particular, don't have functions return pointers to
their own local values— those disappear at return

@ NTNU

Dynamic memory allocation

» The library function malloc allocates a chunk of memory
at run-time and returns the address.

» The library function free can be used to release the
chunk of memory allocated by malloc.

// Declare an int pointer
int *p;

// Allocate memory for n ints
p = malloc (n * sizeof(int));

// Check if the memory allocation was successful
if (!'p){

// Error
}

// Release the allocated memory
free (p);

@ NTNU

Segmentation faults

» Error that occurs if (when) you try to access memory
you did not allocate, i.e., memory you do not ‘'own’.
» Causes the program to crash.

» Solution
> Quick-fix: print statements
> Robust fix: debugger

@ NTNU

What about the lifetime and scope of dynamic
heap variables?

» Local variables allocated on stack disappear when we
are outside their local scope.

» Variables dynamically allocated in the heap using
malloc do not.

@ NTNU

What about the lifetime and scope of dynamic
heap variables?

int* make_variable (void) {

int local = 3;
int* ret =
(int*) malloc (sizeof(int));
*ret = 42;
return ret;

int main (int argc, char** argv) {
int local = 2;
int* ptr = make_variable ();

// prints "values: 2, 42"

printf ("values: _%d, _%d\n",
local, *ptr);

return O

@ NTNU

Arrays

Arrays...

» are fixed size, where the
size is indicated on

: // Create array of length 3
construction. int mil = (5. 8, 10}
» have no knowledge of // Access the array (n = 5)
their size when they are int n =m[0];
// Error

out of scope.

» have no builtin check to
see if indices are within
bounds.

int o = m[4];

@ NTNU

Arrays- are they simply pointers?

» Yes. Almost.

» There is a close
relationship between
arrays and pointers.

» Pointers are also
commonly used to pass

arrays between functions.

// Construct array of 15 ints
int my_arr[15];

// Access value
my_arr[4] = 42;

// Square brackets is simply
// syntactic sugar for

// pointer arithmetic.

// We could do this instead:
*(my_arr + 4) = 42;

@ NTNU

Type definitions

Define names for user-defined or built-in types.

typedef <type> <name>;
» Convenient for hiding complexity and for configuration.

typedef double real_t;
typedef int64_t int_t;

@ NTNU

Structs and user-defined types

Structs are collections of variables.

» Convenient for organizing data.

struct options_struct {

int_t N;

int_t max_step;

int_t snapshot_frequency;
Iy

options_struct opts;
options_struct* opts_ptr = &opts;

// Access struct member
opts.N = 10;

// Dereference pointer

// and access struct member
int n = opts_ptr—>N;

@ NTNU

Structs and user-defined types

Structs are collections of variables.

» Convenient for organizing data.

typedef struct options_struct {
int_t N;
int_t max_step;
int_t snapshot_frequency;

} OPTIONS;

OPTIONS opts;
OPTIONS#* opts_ptr = &opts;

// Access struct member
opts.N = 10;

// Dereference pointer

// and access struct member
int_t n = opts_ptr—->N;

@ NTNU

Macros

Macros are initialised with the directive #define, and tells
the preprocessor to replace any occurance of the macro
with the value of the macro. This happens at compile-time.

» Convenient for clairity.

#define Pl 3.14
double circle_area (double r) {
return r*r*P|;

}
» Convenient for configuration.

#define THRESHOLD 0.001
void func (double x) {

if (x <THRESHOLD) { ... }
else if (x > THRESHOLD) { ... }
else { ... }

@ NTNU

Macros

» Convenient for hiding complexity.

#define SQUARE(x) ((Xx)*(x))

int circle_area = SQUARE(3) * 3.14;
» Why would this not work?

#define BAD_SQUARE(X) X*X
int circle_area = BAD_SQUARE(2+5) * 3.14;

@ NTNU

Macros

» Convenient for hiding complexity.

#define SQUARE(X) ((x)*(x))
int circle_area = SQUARE(3) * 3.14;
//int circle_area = ((3)*(3)) * 3.14;

» Why would this not work?

#define BAD_SQUARE(Xx) x*Xx
int circle_area = BAD_SQUARE(2+5) * 3.14;
// int value = 2+5%2+5 * 3,14;

@ NTNU

Extra material

» General walkthrough of C:
https://www.youtube.com/watch?v=31QEunpmtRA

» Video on understanding pointers:
https://www.youtube.com/watch?v=2ybLD6_2gKM

@ NTNU

https://www.youtube.com/watch?v=3lQEunpmtRA
https://www.youtube.com/watch?v=2ybLD6_2gKM

