
TDT4200 Parallel
programming
Introduction to C
Maren Wessel-Berg
August 2023

Main focus of this introduction

▶ The basic syntax of C looks a lot like other staticallytyped languages like Java.
▶ Will cover: Hello world example and printf.
▶ Will not cover: If-loops, for-loop, switch statements,functions, etc.

▶ Important concepts for working with C code.
▶ Memory regions.
▶ Scope and lifetime of variables.
▶ Dynamic memory management.
▶ Handling pointers, structs and arrays.
▶ The preprocessor and macros

Note: Some of the slides are based on other courses around the world—Stanford, University of Edinburgh, NTNU, etc.

Hello World

▶ Install gcc or another C-compiler.
▶ Write some code in hello.c:

#include <stdio . h>
int main (int argc , char** argv) {p r in t f (" Hello world \n") ;

return 0;}
▶ Inside of a terminal/shell:

gcc hel lo . c −o hel lo. / he l lo

printf

pr in t f (" These %d + %l f %s . \ n" , 3 , 1 .0 ," symbols are mostly what you need") ;
▶ %d (digit) for integers
▶ %lf (long float) for doubles
▶ %s for strings
▶ \n for newline

Philosophy of C

▶ Assumes competent programmers who deserve fullfreedom and access.
▶ With great power comes great chance of weird bugs, sobe careful.

Memory regions

Instructions
Static data

Heap

Stack

PC

SP
▶ Stack

For data local to functions.Managed by the compiler.
▶ Heap

For dynamically allocateddata.Managed by the programmer(in C) or by the system (inJava).
▶ Static

For data with programlifetime.Initialised when the programstarts.

Memory regions and memory management

▶ In Java
▶ All objects are dynamically allocated in the heap.
▶ Dynamically allocated objects in the heap are recycled

automatically by the garbage collector when they areno longer needed.
▶ In C

▶ No objects, only data structures in all 3 memory regions.
▶ Some data structures are statically allocated, othersdynamically.
▶ Programs must explicitly manage dynamically

allocated data structures in the heap.
▶ Explicit memory management is a major source of error,particularly when the programmer forgets to free thememory, which results in memory leaks.

Stack and local variables
▶ When you have some statements in C, a { basic block }defines a local scope for the variables.

{
int a = 1 , b = 0;

{
int a = 64;b = a − 32;}

p r in t f ("a i s %d , b i s %d\n" , a , b) ;}
▶ a and b live on the stack and disappear when the

local scope is exited.
▶ This code will print “a is 1, b is 32”; the a declared insidethe basic block shadows the exterior a, but is gonewhen the block ends.

Static data region and global variables

#include <stdio . h>
int x = 32;
int main (int argc , char **argv) {pr int_x_va lue () ;}
void pr int_x_va lue (void) {p r i n t f (" x i s %d\n" , x) ;}
▶ This works because x lives in the static data region of

memory and is in the object code’s name table.
▶ x has lifetime of the program and scope of the file.

Pointers, in principleBefore we get into explicit memory management, we needsome notation for writing about memory.
▶ A C pointer is a variable that holds the memory

address of a piece of data.
▶ You can examine its value, but you will only see a LargeMeaningless Integer, which isn’t very informative.
▶ The idea is to have the value of one memory locationcoincide with the index of another memory location:Location 0× 0 0× 1 0× 2 0× 3 0× 4 0× 5Value 0× 2 20 0× 5 12 64 42

▶ Location 0× 2 contains a pointer, and it points at thevalue 42 (in location 0× 5)
▶ Location 0× 0 contains a pointer-to-a-pointer, it points atthe value 0× 5 (in location 0× 2), which in turn points atthe value 42 (in location 0× 5)
▶ We could continue...

Pointers, in practice

▶ The concept itself is not too bad, but manipulation ofpointers can get tricky:
double value = 0 .0 ; / / A double − p re c i s i on sca la r
double *ptr1 ; / / A po in te r to a double − p re c i s i on sca la r
double **ptr2 ; / / A pointer −to −a−po in ter to a double − p re c i s i on sca la r
ptr1 = &value ; / / Get the address of our 0.0 − valued var iab l eptr2 = &ptr1 ; / / And get the address of i t s address
value = 3 .14 ; / / Ass ign with 0 l e v e l s of i n d i r e c t i o n*ptr1 = 2 .71 ; / / Ass ign with 1 l e v e l of i n d i r e c t i o n**ptr2 = 3 .14 ; / / Ass ign with 2 l e v e l s of i n d i r e c t i o n

Note that all the assignments change the same memorylocation, e.g., after *ptr1=2.71, printing value will give you
2.71.

Pointers, in practice

▶ Mind the lifespan of what you find the & of– if it lives onthe stack, it will disappear with the block it lives in.
▶ In particular, don’t have functions return pointers totheir own local values— those disappear at return

Dynamic memory allocation
▶ The library function malloc allocates a chunk of memoryat run-time and returns the address.
▶ The library function free can be used to release thechunk of memory allocated by malloc.

/ / Dec lare an i n t po in te r
int *p ;
/ / A l l o ca t e memory fo r n i n t sp = malloc (n * sizeof (int)) ;
/ / Check i f the memory a l l o ca t i on was suc c e s s f u l
i f (! p) {/ / E r ror}
/ / Re lease the a l l o ca ted memoryfree (p) ;

Segmentation faults

▶ Error that occurs if (when) you try to access memory
you did not allocate, i.e., memory you do not ’own’.

▶ Causes the program to crash.
▶ Solution

▶ Quick-fix: print statements
▶ Robust fix: debugger

What about the lifetime and scope of dynamic
heap variables?

▶ Local variables allocated on stack disappear when weare outside their local scope.
▶ Variables dynamically allocated in the heap using

malloc do not.

What about the lifetime and scope of dynamic
heap variables?

int* make_variable (void) {
int l o ca l = 3 ;
int* ret =(int *) malloc (sizeof (int)) ;* ret = 42;
return ret ;}

int main (int argc , char** argv) {
int l o ca l = 2 ;
int* ptr = make_variable () ;
/ / p r i n t s " va lues : 2 , 42"pr in t f (" values : %d , %d\n" ,loca l , *ptr) ;
return 0}

Arrays

Arrays...
▶ are fixed size, where thesize is indicated onconstruction.
▶ have no knowledge oftheir size when they areout of scope.
▶ have no built in check tosee if indices are withinbounds.

/ / Create array of l eng th 3
int m[] = {5 , 8 , 10}/ / Access the array (n = 5)
int n = m[0] ;/ / Er ror
int o = m[4] ;

Arrays- are they simply pointers?

▶ Yes. Almost.
▶ There is a closerelationship betweenarrays and pointers.
▶ Pointers are alsocommonly used to passarrays between functions.

/ / Construct array of 15 i n t s
int my_arr [15] ;
/ / Access valuemy_arr [4] = 42;
/ / Square brackets i s s imply/ / s y n t a c t i c sugar fo r/ / po in te r a r i thme t i c ./ / We could do t h i s ins tead :*(my_arr + 4) = 42;

Type definitions

Define names for user-defined or built-in types.
typedef <type> <name>;

▶ Convenient for hiding complexity and for configuration.
typedef double r ea l _ t ;
typedef in t64_ t i n t _ t ;

Structs and user-defined types
Structs are collections of variables.
▶ Convenient for organizing data.

struct opt ions_struct {i n t _ t N;i n t _ t max_step ;i n t _ t snapshot_frequency ;} ;
opt ions_struct opts ;opt ions_struct* opts_ptr = &opts ;
/ / Access s t r u c t memberopts .N = 10;/ / Dereference po in te r/ / and access s t r u c t member
int n = opts_ptr −>N;

Structs and user-defined types
Structs are collections of variables.
▶ Convenient for organizing data.

typedef struct opt ions_struct {i n t _ t N;i n t _ t max_step ;i n t _ t snapshot_frequency ;} OPTIONS ;
OPTIONS opts ;OPTIONS* opts_ptr = &opts ;
/ / Access s t r u c t memberopts .N = 10;/ / Dereference po in te r/ / and access s t r u c t memberi n t _ t n = opts_ptr −>N;

Macros
Macros are initialised with the directive #define, and tells
the preprocessor to replace any occurance of the macrowith the value of the macro. This happens at compile-time.
▶ Convenient for clairity.

#define PI 3.14
double c i r c l e _a rea (double r) {

return r*r*PI ;}
▶ Convenient for configuration.

#define THRESHOLD 0.001
void func (double x) {

i f (x < THRESHOLD) { . . . }
else i f (x > THRESHOLD) { . . . }
else { . . . }}

Macros

▶ Convenient for hiding complexity.
#define SQUARE(x) ((x) * (x))
int c i r c l e _a rea = SQUARE(3) * 3 .14 ;

▶ Why would this not work?
#define BAD_SQUARE(x) x*x
int c i r c l e _area = BAD_SQUARE(2+5) * 3 .14 ;

Macros

▶ Convenient for hiding complexity.
#define SQUARE(x) ((x) * (x))
int c i r c l e _a rea = SQUARE(3) * 3 .14 ;/ / i n t c i r c l e _ a r e a = ((3) * (3)) * 3 . 14 ;

▶ Why would this not work?
#define BAD_SQUARE(x) x*x
int c i r c l e _area = BAD_SQUARE(2+5) * 3 .14 ;/ / i n t value = 2+5*2+5 * 3 .14 ;

Extra material

▶ General walkthrough of C:
https://www.youtube.com/watch?v=3lQEunpmtRA

▶ Video on understanding pointers:
https://www.youtube.com/watch?v=2ybLD6_2gKM

https://www.youtube.com/watch?v=3lQEunpmtRA
https://www.youtube.com/watch?v=2ybLD6_2gKM

