
TDT4200 Parallel
programming
PS2
Maren Wessel-Berg & Claudi Lleyda Moltó
September 2023

Practical information
Published: 12/09/23
Deadline: 19/09/23 at 22:00
Evaluation: Pass/Fail

▶ Completing the problem set ismandatory.
▶ The work must be done individually and without helpfrom anyone but the TDT4200 staff.
▶ Reference all sources found on the internet orelsewhere.
▶ The requirements, and how and what to deliver isexplained in the problem set description found onBlackBoard.
▶ Start early!

Where can you get help with the assignment?

▶ Recitation lecture: introduction to the problem set
(Today)Slides will be made available online.

▶ TA hours: ask questions in person
Friday, September 15, 10:00–12:00 in CybeleMonday, September 18, 13:00–15:00 in Cybele

▶ Piazza: question forum
Ask questions any time (but give us time to answer).Select the ps2 folder for questions related to thisproblem set.Do not post full or partial solutions!

https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://piazza.com/class/llxyp287tqn7nq

Topic
Finite difference approximation of the 2D heat equation using MPI

▶ In PS1 you worked with a sequential code that solvedthe 1D heat equation using implicit methods (Jacobi,Gauss-Seidel, Red-Black Gauss-Seidel).
The goal was for you to familiarise yourselfwith the exercise and code setup, and toprogram in C, which will be useful for allfuture exercises.

▶ In PS2 you will implement an explicit method forsolving the 2D heat equation usingMPI.
▶ You will also answer questions about yourimplementation and the curriculum.

Today
▶ Introduce the problem set.
▶ Talk about potential challenges that can arise whenparallelising the FDM for the 2D heat equation.
▶ Repeat some MPI concepts from the main lectures.

1D heat equation
Was explained in the recitation for PS1

∂u

∂t
= K

∂2u

∂x2

2D heat equation
For this exercise we are adding a dimension

∂u

∂t
= K

(
∂2u

∂x2
+
∂2u

∂y2

)

Solving the 2D heat equation
Shockingly, finding a solution to the heat equation does notsuddenly become easy when adding another dimension.
▶ Finding an analytical solution might be computationallyexpensive or infeasible.
▶ We can use some numerical method to find an

approximate solution.
▶ In PS1 we used implicit methods– in this exercise we willuse an explicit method.

Implicit: calculations involve bothunknown and known system quantities.
Explicit: calculations only involve knownsystem quantities.What are the implications for thecomputational cost?

Finite Difference Method (FDM)
(The numerical method we will be using)

▶ Themain idea is to approximate the derivatives withfinite differences.Forward difference:
∂

∂x
f ≈ f(x+∆x)− f(x)

∆x

Backward difference:
∂

∂x
f ≈ f(x)− f(x−∆x)

∆x

Central difference:
∂

∂x
f ≈ f(x+∆x)− f(x−∆x)

2∆x

▶ We will use the forward difference for the temporalderivatives and the central difference for the spatialderivatives.

Finite Difference Method (FDM)
We will use the forward difference for the temporalderivatives and the central difference for the spatialderivatives.

Our partial differential equation (PDE):
∂u

∂t
= K

(
∂2u

∂x2
+

∂2u

∂y2

)

Our discretized PDE:
uki,j − uk+1

i,j

∆t
= Ki,j ·(

uki−1,j − 2uki,j + uki+1,j

∆x2
+

uki,j−1 − 2uki,j + uki,j+1

∆y2

)

Finite Difference Method (FDM)
We will use the forward difference for the temporalderivatives and the central difference for the spatialderivatives.

Our partial differential equation (PDE):
∂u

∂t
= K

(
∂2u

∂x2
+

∂2u

∂y2

)
Our discretized PDE:
uki,j − uk+1

i,j

∆t
= Ki,j ·(

uki−1,j − 2uki,j + uki+1,j

∆x2
+

uki,j−1 − 2uki,j + uki,j+1

∆y2

)

Finite Difference Method (FDM)
We will use the forward difference for the temporalderivatives and the central difference for the spatialderivatives.

Our reordered discretized PDE when we let
∆x = ∆y = h:
uk+1
i,j = uki,j +Ki,j

∆t

h2
·(

uki−1,j + 2uki,j − uki+1,j − uki,j−1 + 2uki,j − uki,j+1

)
Note that in the handout code h = 1.
You can try this yourself if you want.We are also using Neumann boundary conditions.

Finite Difference Method (FDM)
We will use the forward difference for the temporalderivatives and the central difference for the spatialderivatives.

ui,j

ui+1,jui-1, j

ui, j-1

ui, j+1

You can try this yourself if you want.
We are also using Neumann boundary conditions.

Parallelisation of FDM
Domain decomposition

x

y

0 N

M

x

y

P0

P1

P2

P3

0 N

M

Each process will be responsible for calculations in asub-grid.

Parallelisation of FDM
Border exchange

x

y

0 N

M

x

y

P0

P1

P2

P3

0 N

M

What do we do at the sub-grid boundaries?We need communication between the processes!

The Message Passing Interface (MPI)
▶ You have gotten an introduction toMPI in the mainlectures, which will be useful for completing thisexercise.
▶ You were shown an example of domain

decomposition and border exchange in the mainlectures, which will also be useful for completing thisexercise.
▶ You can use the functions covered in this weekslectures, i.e.,

MPI_Init
MPI_Finialize
MPI_Comm_size
MPI_Comm_rank
MPI_Send
MPI_Recv
MPI_Bcast

Note on MPI_Send and MPI_Recv
MPI_Send and MPI_Recv are blocking functions and will notreturn until the buffer is ready to be reused.
The completion of MPI_Send indicate that the send buffercan be modified without affecting the data transmitted tothe receiver, i.e., the send buffer has been emptied.
The completion of MPI_Recv indicate that the data in thereceive buffer can be read, i.e., the receive buffer is filled.
They are easy to use, but...

Deadlock
... they are prone to deadlocks.
Consider the following sequence:

1. Stand in a circle
2. Extend your right hand to your right neighbor
3. Extend your left hand to your left neighbor when yourright hand has been shaken

You could be standing for a while!
This is analogous of what could happen if you don’t payattention when using blocking send and receive functioncalls.

Deadlock

P0 P1

Send

Send

Receive

Receive

Deadlock

int rank , sendData [N] , receiveData [N] ;MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
i f (rank == 0) {MPI_Send (sendData , N, MPI_INT , 1 ,0 , MPI_COMM_WORLD) ;

MPI_Recv (receiveData , N, MPI_INT , 0 ,0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;} else i f (rank == 1) {MPI_Send (sendData , N, MPI_INT , 0 ,0 , MPI_COMM_WORLD) ;
MPI_Recv (receiveData , N, MPI_INT , 1 ,0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;}

Avoiding deadlock

int rank , sendData [N] , receiveData [N] ;MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
i f (rank == 0) {MPI_Send (sendData , N, MPI_INT , 1 ,0 , MPI_COMM_WORLD) ;

MPI_Recv (receiveData , N, MPI_INT , 0 ,0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;} else i f (rank == 1) {MPI_Recv (receiveData , N, MPI_INT , 1 ,0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
MPI_Send (sendData , N, MPI_INT , 0 ,0 , MPI_COMM_WORLD) ;}

Avoiding deadlock (alternative)

int rank , sendData [N] , receiveData [N] ;MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Sendrecv (sendData , N, MPI_INT , 1 , 0 , receiveData , N,MPI_INT , 0 , 0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
MPI_Sendrecv (sendData , N, MPI_INT , 0 , 0 , receiveData , N,MPI_INT , 1 , 0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

MPI_Sendrecv

Combines a blocking send and a receive in a single call. TheMPI implementation schedules the communication so thatthe program does not hang or crash.
MPI_Sendrecv (

void *sendBuffer ,
int sendCount ,MPI_Datatype sendType ,
int destinationRank ,
int sendTag ,
void *receiveBuffer ,
int receiveCount ,MPI_Datatype receiveType ,
int sourceRank ,
int receiveTag ,MPI_Comm communicator ,MPI_Status *status) ;

Writing to file
In the FDM code we are writing to file at regular time stepintervals to save the state of the grid.
→We will write to file many times.
How do we write to file when we have more than oneprocesses?
We have several options. . .

Writing to file
Processes write to multiple files independently.

P0 P1 PN...

...

Writing to file
Data is gathered in the root process that writes to a singlefile.

P0 P1 PN...

Writing to file
Processes cooperate and write to a single file→MPI I/O!

P0 P1 PN...

MPI I/O
▶ MPI supports I/O!
▶ Why use MPI I/O?

▶ Parallel I/O→ Performance
▶ A single file instead of one file per process

▶ Writing is like sending and reading is like receiving.
▶ You will need to

▶ Open the file
▶ Write to or read the file
▶ Close the file

Writing to file
Open and close the file

voidwr i t e _ t o _ f i l e (void){ F i l e *out = fopen (’ resu l t s . bin ’ , ’w ’) ;f c lose (out) ;}

Writing to file
Open and close the file

voidwr i t e _ t o _ f i l e (void){ MPI_Fi le out ;MPI_File_open (MPI_COMM_WORLD,’ resu l t s . bin ’ ,MPI_MODE_CREATE | MPI_MODE_WRONLY,MPI_INFO_NULL ,&out) ;
MPI_F i le_c lose (&out) ;}

Writing to file
MPI_File_open and MPI_File_close

MPI_File_open (MPI_Comm comm,
char *filename ,
int mode,MPI_Info info ,MPI_Fi le * f i lehandle ,) ;

MPI_F i le_c lose (MPI_Fi le * f i lehandle ,) ;

Each process in thecommunicator comm opensthe file identified by filename
info provides extrainformation, but if you don’tcare put MPI_INFO_NULL
mode describes the accessmode:MPI_MODE_WRONLY→ writeMPI_MODE_RDONLY→ readMPI_MODE_CREATE→ createfile if it does not exist. . .Closes the file associated with
filehandle.

Writing to file
All processes write their ranks to the same file

We want it to look something like this:

01...N

P0 P1 PN...

Writing to file
MPI_File_write_at_all

MPI_F i l e _wr i t e _a t _a l l (MPI_Fi le * f i lehandle ,MPI_Offset of fset ,
void *buffer ,
int elements ,MPI_Datatype elementType ,MPI_Status *status) ;

Write to the file associatedwith the filehandle at an
offset
buffer is the data we want towrite
elements and elementType isthe size of the data we arewriting
status provides extrainformation, but if you don’tcare, just putMPI_STATUS_IGNORE

Writing to file
All processes write their ranks to the same file

voidwr i t e _ t o _ f i l e (void){ MPI_Fi le out ;MPI_File_open (MPI_COMM_WORLD,’ resu l t s . bin ’ ,MPI_MODE_CREATE | MPI_MODE_WRONLY,MPI_INFO_NULL ,&out) ;
MPI_Offset o f f se t = rank * sizeof (int) ;
MP I _F i l e _wr i t e _a t _a l l (out , of fset , &rank ,1 , MPI_INT , MPI_STATUS_IGNORE) ;}

Your tasks
▶ Initialize and finalize the MPI environment
▶ Broadcast program arguments
▶ Decide on how to divide the grid into sub-grids and takecare of memory allocation and domain initialization foreach process
▶ Perform calculations in a sub-grid
▶ Communicate border values
▶ Handle program output with MPI I/O

Extra resources
Documentation (and nice examples): RookieHPC
Debugging: tmpi

https://rookiehpc.org/mpi/index.html
https://github.com/Azrael3000/tmpi

