Denotational semantics

What we're doing today

- We're looking at how to reason about the effect of a program by mapping it into mathematical objects
- Specifically, answering the question "which function does this program compute?"
- We'll run into some issues when we get to programs that potentially never stop with a result
- We're going for functions between environment states, they can only be partial functions when there are states that produce no end state

What is a program, anyway?

- As far as the machine is concerned: instructions, data, memory, yadda yadda...
- Those are all configurations of tiny switches, oblivious to the computation they represent in the same way that a traffic light doesn't know what its states and transitions tell people
- Independent of the machine, a program is also a description of a method to compute a result
- To programmers, at least

What can we compute?

- A primitive recursive function is defined in terms of
- The constant function 0 (which takes no arguments, and outputs 0)
- The successor function $S(k)=k+1$ (which adds 1 to a number)
- The projection function $P_{i}{ }^{n}(x 1, \ldots, x i, \ldots, x n)=x i$ (which selects value number i out of a bunch of values
- These are enough to define a bit of arithmetic:
- The most tedious addition method in the world... $\operatorname{add}(0, x)=x$
\leftarrow base: $x+0=x$
$\operatorname{add}(S(n), x)=S\left(P_{1}^{3}(\operatorname{add}(n, x), n, x)\right) \quad \leftarrow$ step: $x+(n+1)=(x+n)+1$
- The most tedious subtraction method follows, from sub. by differences
- Multiply and divide can be built from add \& sub, and so on and so forth...
- It all boils down to simple schemes of counting one step at a time

The primitive side of it

- Primitive recursive functions can compute anything which maps uniquely onto all the natural numbers, under some kind of encoding/interpretation
- That is, they're total, meaning "uniquely defined for all admissible sets of inputs"
- Everything which maps to natural numbers is quite a bunch of stuff, but it's restricted to programs that terminate with a defined result
- Hence, no branching and nothing fancy, please
- That's kind of primitive

Partial recursive functions

- If we add the power of saying something like ($\exists \mathrm{y}) \mathrm{R}(\mathrm{y}, \mathrm{x})$
to mean
"The smallest x such that $R(y, x)$ is true", or
" 0 " if no such y exists
we get a conditional, of sorts.
- We also have equivalence with Turing machines: conditionals + jumps can be written as conditionals + recursion
- Writing out anything nontrivial in this notation is also the equivalent amount of fun as writing them out in terms of Turing machines
- Let's not go there, the point is that they're equivalent

That's the edge of the world

(computationally speaking)

- With enough spare time on your hands, it can be proven that the partial recursive functions are also exactly what can be computed by
- Lambda calculus
- Register machines
- A few more exotic models of computation
- At a point where he must have been tired of proving things, Alonzo Church (λ-calculus Guy) made his mind up that these are the functions we can get from any computational model, and left it at that. We'll take his word for it.
- As we know, loops can be infinite, so these functions don't have values for all inputs any more

What a program is

- Hence, one way of looking at "a program" is that it's an evaluation of a partial recursive function.
- Neither programmer nor program may care, it just means that you can always write it out that way
- Programs which stop have their function's value for the given input
- Programs which don't stop don't have any kind of value, because they never produce one
- Infinite loops can be very annoying
- At least when you wanted to calculate a result
- Infinite loops can be very useful
- I will be upset if my laptop halts to conclude that the value of the operating system is 42

Which programs stop?

- We can not compute the answer to that
- Suppose that we could, and had a function

$$
\text { halts }(p(x))=
$$

if magical_analysis(p(x)) then yes
else no

- Never mind how it works, just suppose that it can take any function p with any input x, and answer whether or not it returns
- This lets us write a function that answers only about programs which have themselves as input:

```
halts_on_self \((\mathrm{p})=\)
    if ( halts \((p(p)))\) then yes
    else no
```


I have a cunning plan...

- We can easily make a function run forever on purpose, so write one which does that when a function-checking function halts on itself:

```
        trouble (p) =
            if ( halts_on_self(p) ) then loop_forever
            else yes
```

- Since 'trouble' is a function-checking function, we can see what it would make of itself:
trouble (trouble) =
if (halts_on_self(trouble)) then loop_forever
else yes
which is equivalent to
trouble $($ trouble $)=$
if (halts(trouble(trouble))) then loop_forever
else yes
- If it halts, it should loop forever; if it loops forever, it should halt.
- This program can not exist, so the halting function can not.

NTNU - Trondheim Norwegian University of Science and Technology

That's why this gets messy

- We just looked at a pseudocode-y variant of Turing's proof that the halting problem is not computable
- It can also be written out in terms of a counting scheme and partial recursive functions, but this way may be a bit more intuitive
- Bottom line: we can't expect to find well behaved functions for every arbitrary program
- Without that, we have to take extra care of how to define a program in terms of its function

Revisiting the operational approach

- Focus was on how a program is executed
- Each syntactic construct is interpreted in terms of the steps taken to modify the state it runs in
- The semantic function is described by a recipe for how to compute its value (the final state), when it has one

"Denote" (verb):

- To serve as an indication of
- To serve as an arbitrary mark for
- To stand for

Denotational semantics

- The program is a way to symbolize a semantic function
- Its characters are arbitrary, as long as we can systematically map them onto the mathematical objects they represent
- The string "10" can mean natural number 10 (decimal), 2 (binary), 16 (hexadecimal)...
- ...in Roman numerals, 10 is " X "...
- The symbol is one thing, what it denotes is another

Basic parts

- The hallmarks of denotational semantics are
- There is a semantic clause for all basis elements in a category of things to symbolize
- For each method of combining them, there is a semantic clause which specifies how to combine the semantic functions of the constituents

The simplest illustration

- Take this grammar for arbitrary binary strings:

$$
\begin{array}{lll}
\mathrm{b} & \rightarrow 0 \\
\mathrm{~b} & \rightarrow 1 \\
\mathrm{~b} & \rightarrow \mathrm{~b} & 0 \\
\mathrm{~b} & \rightarrow \mathrm{~b} & 1
\end{array}
$$

- ...and let $b, 0,1$ stand for the symbols in our grammar, while $\{0,1,2, \ldots\}$ are the natural numbers...

A semantic function

- We can write a function N to attach the natural numbers to valid statements in the grammar:

$$
\left.\begin{array}{l}
N(0)=0 \\
N(1)=1 \\
N(b) 0)=2 * N(b) \\
N(b
\end{array} 1\right)=2 * N(b)+1 .
$$

- This is just the ordinary interpretation of binary strings as unsigned integers, written out all formal-like
- Each notation is related to the mathematical object it denotes (here, it's a natural number)

Finding a value

- Using this formalism, we can write out what the value of "1001" is:

$$
\begin{aligned}
& \mathrm{N}(1001) \\
& =2 * N(100)+1 \\
& =2 *(2 * N(10))+1 \\
& =2 *(2 *(2 * N(1)))+1 \\
& =2 *(2 *(2 * 1))+1 \\
& =2 *(4)+1 \\
& =\underline{9}
\end{aligned}
$$

$$
\begin{aligned}
& N(0)=0 \\
& N(1)=1 \\
& N(b) 0)=2 * N(b) \\
& N\left(\begin{array}{ll}
b & 1
\end{array}\right)=2 * N(b)+1
\end{aligned}
$$

Finding a value

Symbols from grammar are systematically replaced with their semantic interpretations

Result is a thing the input can't contain, and the compiler can't understand

Is this a valuable thing?

- Well... the example is so small that it's almost pointless
- In principle, however:
- Assume an implementation which sets lowest order bit according to last symbol in string, and shifts left to multiply by 2
- In a signed byte-wide register w. 2's complement, this would make the value of $11111111=-1$, whereas $\mathrm{N}(11111111)=255$
- With semantics defined by the implementation, whatever comes out is the standard of what's correct
- Semantic specification in hand, we can say that such an implementation doesn't do what it's supposed to

Remember the While language:

- Syntax:
$a \rightarrow n|x| a 1+a 2 \mid a 1$ * $2 \mid a 1-a 2$
$b \rightarrow$ true |false |a1 = a2 |a1 $\leq \mathrm{a} 2|\neg b| b 1 \& b 2$
$\mathrm{S} \rightarrow \mathrm{x}:=\mathrm{a} \mid$ skip|S1; S2
$S \rightarrow$ if b then S 1 else $S 2 \mid$ while b do S
- Syntactic categories:
n is a numeral
x is a variable
a is an arithmetic expression, valued $A[a]$
b is a boolean expression, valued $B[b]$
S is a statement

Denotational semantics for While

- What we attach to the statements should be a function which describes the effect of a statement
- The steps taken to create that effect is presently not our concern
- Skip and assignment are still easy:
$S_{d s}[x:=a] s=s[x \rightarrow A[a] s] \quad$ (as before)
$\mathrm{S}_{\mathrm{ds}}[$ skip] = id (identity function)
- Composition of statements corresponds to composition of functions:
$\mathrm{S}_{\mathrm{ds}}[\mathrm{S} 1 ; \mathrm{S} 2]=\mathrm{S}_{\mathrm{ds}}[\mathrm{S} 2] \circ \mathrm{S}_{\mathrm{ds}}[\mathrm{S} 1]$
"S2-function applied to the result of S1-function", cf. how $f \circ g(x) \leftrightarrow f(g(x))$

Conditions need a notation

- Specifically, a function which goes from one boolean and two other functions, and results in one of the two functions
- Let's call it cond, and write S_{ds} [if b then S1 else S2] = cond ($\mathrm{B}[\mathrm{b}], \mathrm{S}_{\mathrm{ds}}[\mathrm{S} 1], \mathrm{S}_{\mathrm{ds}}[\mathrm{S} 2]$)
with the understanding that, for example, cond ($\mathrm{B}\left[\right.$ true], $\mathrm{S}_{\mathrm{ds}}[\mathrm{x}:=2], \mathrm{S}_{\mathrm{ds}}$ [skip]) $\mathrm{s}=\mathrm{s}[\mathrm{x} \rightarrow \mathrm{A}[2] \mathrm{s}$] and
cond (B[false], $\mathrm{S}_{\mathrm{ds}}[\mathrm{x}:=2], \mathrm{S}_{\mathrm{ds}}$ [skip]) $\mathrm{s}=\mathrm{id} \mathrm{s}$

'while b do S' gets a little tricky

- What we need is a function applied to a function applied to a function... as many times as the condition is true
- Problems:
- The program text does not always determine how many times the condition will be true
- It is not guaranteed that it ever will be false
- The function we are looking for is specific to each program
- We have a notation to denote "the outcome of the loop body": $S_{d s}[S]$
- We need one to denote "the outcome of repeating the loop body an unknown number of times"

Calculating with functionals

- In the manner that a variable is a named placeholder for a range of values...
- ...and a function is a named placeholder for a way to combine variables...
- ...so a functional F is a generalized range of functions, which can stand for any of them

Functions as unknowns

- This lets us treat a functional F as "the function which fits our constraints"
- in the same way we can write x for "the value which fits the constraint $x^{*} 2+12=42$ ", and treat x as the solution to that
- Looking at how to read 'while b do S', we can write out its halting condition in terms of cond (from before), and an unknown function g:

$$
\mathrm{Fg}=\operatorname{cond}\left(\mathrm{B}[\mathrm{~b}], \mathrm{g} \circ \mathrm{~S}_{\mathrm{ds}}[\mathrm{~S}], \text { id }\right)
$$

- That is: given any function g (as "input"), the functional F represents either the effect of applying g to the outcome of the loop body, or the identity function, depending on $\mathrm{B}[\mathrm{b}]$.
- The resulting function can be applied to states where $\mathrm{B}[\mathrm{b}]$ has a value

Definition of a "fixed point"

- This is mercifully simple
- A fixed point is where taking an argument and doing some stuff to it results in the argument itself
- i.e. when $f(x)=x$, then x is a fixed point of f
- 2 is a fixed point of $f(x)=\left(x^{2} / 2 x\right)+1$
- It's "fixed" since it doesn't change no matter how many times you apply the function:

$$
x=f(x)=f(f(x))=f(f(f(x)))=\ldots \text { and so on }
$$

Thus, we can (partly) describe the effect of 'while b do S'

- S_{ds} [while b do S] = FIX F where $\mathrm{Fg}=\operatorname{cond}\left(\mathrm{B}[\mathrm{b}], \mathrm{g} \circ \mathrm{S}_{\mathrm{ds}}[\mathrm{S}]\right.$, id)
- That is, it's a function where it may be the case that

$$
\begin{aligned}
& \operatorname{cond}\left(\mathrm{B}[\mathrm{~b}], \mathrm{S}_{\mathrm{ds}}[\mathrm{~S}], \text { id }\right) \mathrm{s}=\mathrm{s}^{\prime} \\
& \operatorname{cond}\left(\mathrm{B}[\mathrm{~b}], \mathrm{S}_{\mathrm{ds}}[\mathrm{~S}], \text { id }\right) \mathrm{s}^{\prime}=\mathrm{s}^{\prime \prime}
\end{aligned}
$$

$$
\operatorname{cond}\left(\mathrm{B}[\mathrm{~b}], \mathrm{S}_{\mathrm{ds}}[\mathrm{~S}], \text { id }\right) \mathrm{s}^{(n-1)}=\mathrm{s}^{(n)}
$$

but eventually,

$$
\operatorname{cond}\left(\mathrm{B}[\mathrm{~b}], \mathrm{S}_{\mathrm{ds}}[\mathrm{~S}], \text { id }\right) \mathrm{s}^{(n)}=\mathbf{s}^{(n)}
$$

and the loop doesn't alter anything any more.

- That will be the case when it has ended
- When it doesn't end, we can't describe the effect, and no solution should be defined

So, what's the outcome of a loop? (Without running it?)

- Take the factorial program we looked at for the operational case:

$$
\text { while } \neg(x=1) \text { do }\left(y:=y^{*} x ; x:=x-1\right)
$$

- We're interested in functions g that satisfy

$$
\begin{aligned}
& \text { cond }\left(B[b], g \circ S_{d s}[S] \text {, id }\right) s=s \\
& \text { that is, } \\
& \text { cond }\left(B[b], g \circ[x \rightarrow A[x:=x-1]] \circ\left[y \rightarrow A\left[y^{*} x\right]\right], \text { id }\right) s=s
\end{aligned}
$$

- Generally, these have the form of the functional

$$
\begin{array}{lll}
(\mathrm{Fg}) \mathrm{s}=\mathrm{g} s & \text { if } \mathrm{x} \text { is different from } 1 & \text { (do something to the state) } \\
(\mathrm{Fg}) \mathrm{s}=\mathrm{s} & \text { if } \mathrm{x}=1 & \text { (that's the loop halting condition) }
\end{array}
$$

What kind of g fits FIX (F g)?

- Here's one:

- Here's another:

$g 2=g 2 s$	if $x>1$
$g 2=s$	if $x=1$
$g 2=s$	if $x<1$

 if \(x>1\)
 $\mathrm{g} 2=\mathrm{s}$
if $x<1$

- These are both fixed points of the functional (F g)
- Substitute g1 and g2 into it, you get that
$(F \mathrm{~g} 1) \mathrm{s}=\mathrm{g} 1 \mathrm{~s}$
and
(F g2) $s=g 2 s$

An additional constraint

- We can create any number of g-s like this, we want to narrow them down into one which reflects what the program means
- Since we've abstracted away the implementation, we need to say something about which fixed points are admissible

When things loop forever

- If the execution of (while b do S) in state s never halts, there is an infinite number of states $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots$ such that
$-\mathrm{B}[\mathrm{b}] \mathrm{s}_{\mathrm{i}}=\mathrm{tt} \quad$ (i.e. the condition is true)
- $\mathrm{S}_{\mathrm{ds}}[\mathrm{S}] \mathrm{s}_{\mathrm{i}}=\mathrm{s}_{\mathrm{i}+1} \quad$ (i.e. the loop continues to churn through states)
- An immediate example is while $\neg(x=0)$ do skip
and its matching functional
$(F g) s=g s \quad$ if x is different from 0 in s
$(F g) s=s \quad$ if $x=0$ in s

Which fixed point are we after?

- The reason we have an infinity to choose from:
- Any g where $g s=s$ if $x=0$ in s is a fixed point
- The intuition we aim to capture is that

$$
\begin{aligned}
& \mathrm{gs}=\text { undef } \quad \text { if } \mathrm{x} \text { is different from } 0 \\
& \mathrm{gs}=\mathrm{s} \quad \text { if } \mathrm{x}=0 \text { in } \mathrm{s}
\end{aligned}
$$

- Every other g will have to say something about s in at least some cases when x isn't 0 :

$$
\begin{array}{ll}
g^{\prime} s=\text { undef } & \text { if } x>0 \\
g^{\prime} s=s & \text { if } x=0 \\
g^{\prime} s=s[y \rightarrow A[y+1] s] & \text { if } x<0
\end{array}
$$

- This also captures the effect of the program when it is defined, but adds a bunch of unrelated nonsense about y when it is not defined
- Still a function that captures the effect of the program as much as the other one

Between the lines

- There is an ordering of all possible choices of g , comparing them by how much they specify
- The relationship that g0 s = s' implies g s = s' (but not the other way around) indicates that all the effects of g 0 are also in g
- Writing this as $\mathrm{g} 0 \leqslant \mathrm{~g}$,
(with a slightly bent 'smaller-or-equal' character, to signify that this is a different type of comparison than that between numbers)
we get a notion that there is a 'minimal' g

Making a unique choice

- Add the understanding that 'undef' implies anything and everything
- Like 'false' does for the implication in boolean logic
- The least fixed point in this sense is the most concise description of a loop's effect
- We'll take that one as the semantic function, then

Sum total

- Denotational semantics for While:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{ds}}[\mathrm{x}:=\mathrm{a}] \mathrm{s}=\mathrm{s}[\mathrm{x} \rightarrow \mathrm{~A}[\mathrm{a}] \mathrm{s}] \\
& \mathrm{S}_{\mathrm{ds}}[\text { skip }]=\text { id } \\
& \mathrm{S}_{\mathrm{ds}}[\mathrm{~S} 1 ; \mathrm{S} 2]=\mathrm{S}_{\mathrm{ds}}[\mathrm{~S} 2] \circ \mathrm{S}_{\mathrm{ds}}[\mathrm{~S} 1] \\
& \mathrm{S}_{\mathrm{dd}}[\text { if b then } \mathrm{S} 1 \text { else } \mathrm{S} 2]=\text { cond }\left(\mathrm{B}[\mathrm{~b}], \mathrm{S}_{\mathrm{ds}}[\mathrm{~S} 1], \mathrm{S}_{\mathrm{ds}}[\mathrm{~S} 2]\right) \\
& \mathrm{S}_{\mathrm{ds}}[\text { while b do } \mathrm{S}]=\mathrm{FIX} \mathrm{~F} \\
& \quad \text { where } \mathrm{Fg}=\text { cond }\left(\mathrm{B}[\mathrm{~b}], \text { go } \mathrm{S}_{\mathrm{ds}}[\mathrm{~S}], \text { id }\right) \\
& \quad \text { and FIX F is the least fixed point }
\end{aligned}
$$

"Precision of an analysis"

- I alluded at one point that there is a notion of more and less precise semantic analyses
- and mentioned that it carries a particular meaning of "precise"
- The part about finding the desired fixed point is it.
- "Most precise" is not the fixed point with the most information in
- It is the one which most accurately represents what we know about the program

But seriously, why the...?

- Once again, we have taken an idea that plays a part in the curriculum and stretched it, to see how it works out when applied to a whole (but small) language
- The result is an algebra of semantic functions
- and a notion that our handle on halting is a fixed point of a semantic function
- and an idea that such a function may have multiple fixed points
- and that these relate to each other in an order determined by how much information they specify
- ...which I will say just a tiny bit more about next time

No seriously, why the...?

- Ok. The next (and last) part of theory is a framework for deciding on how control flow affects what we can say about the state of a program.
- Its function maps statements to sets of variables, values, etc. to reason about the program environment
- It halts on a fixed point of the function which produces those sets of things
- It relates that fixed point to other fixed points in a ranking of how precise their information is, using an unorthodox choice of operators
- It's pretty much a variant of what we just looked at, except it is restricted to capturing state information which enables optimizations

So, that's what comes next?

- Yes.
- It'll be a little easier to anchor the state information in aspects of the source code, but we'll still deal with some properties that aren't embodied in the compiler program
- Hopefully, this overview may contribute a way to look at dataflow analysis which makes it easier to see a system among its details
- If it doesn't, you can figure things out anyway
- Don't lose any sleep over denotational semantics if you can follow DF analysis without seeing the correspondence, it's meant as an alternate perspective

