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Denotational semantics
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What we're doing today

• We're looking at how to reason about the effect of a 
program by mapping it into mathematical objects
– Specifically, answering the question “which function does this 

program compute?”

• We'll run into some issues when we get to programs 
that potentially never stop with a result
– We're going for functions between environment states, they can 

only be partial functions when there are states that produce no end 
state
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What is a program, anyway?

• As far as the machine is concerned: instructions, data, 
memory, yadda yadda...

• Those are all configurations of tiny switches, oblivious 
to the computation they represent in the same way that 
a traffic light doesn't know what its states and 
transitions tell people

• Independent of the machine, a program is also a 
description of a method to compute a result
– To programmers, at least
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What can we compute?

• A primitive recursive function is defined in terms of
– The constant function 0 (which takes no arguments, and outputs 0)
– The successor function S(k) = k+1 (which adds 1 to a number)

– The projection function Pi
n (x1, …, xi, …, xn ) = xi (which selects value number i out of 

a bunch of values

• These are enough to define a bit of arithmetic:
– The most tedious addition method in the world...

add ( 0, x ) = x    ← base: x+0 = x

add ( S(n), x ) = S ( P1
3 ( add(n,x), n, x ) ) ← step: x+(n+1)=(x+n)+1

– The most tedious subtraction method follows, from sub. by differences
– Multiply and divide can be built from add & sub, and so on and so forth...
– It all boils down to simple schemes of counting one step at a time
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The primitive side of it

• Primitive recursive functions can compute anything which 
maps uniquely onto all the natural numbers, under some kind 
of encoding/interpretation

• That is, they're total, meaning “uniquely defined for all 
admissible sets of inputs”

• Everything which maps to natural numbers is quite a bunch 
of stuff, but it's restricted to programs that terminate with a 
defined result
– Hence, no branching and nothing fancy, please

– That's kind of primitive
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Partial recursive functions

• If we add the power of saying something like
(∃y) R(y,x)

to mean

“The smallest x such that R(y,x) is true”, or

“0” if no such y exists

we get a conditional, of sorts.

• We also have equivalence with Turing machines: conditionals + 
jumps can be written as conditionals + recursion
– Writing out anything nontrivial in this notation is also the equivalent amount of fun 

as writing them out in terms of Turing machines

– Let's not go there, the point is that they're equivalent
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That's the edge of the world
(computationally speaking)

• With enough spare time on your hands, it can be proven that the 
partial recursive functions are also exactly what can be computed by
– Lambda calculus
– Register machines
– A few more exotic models of computation

• At a point where he must have been tired of proving things, Alonzo 
Church (λ-calculus Guy) made his mind up that these are the 
functions we can get from any computational model, and left it at 
that. We'll take his word for it.

• As we know, loops can be infinite, so these functions don't have 
values for all inputs any more
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What a program is

• Hence, one way of looking at “a program” is that it's an evaluation of 
a partial recursive function.

• Neither programmer nor program may care, it just means that you 
can always write it out that way
– Programs which stop have their function's value for the given input
– Programs which don't stop don't have any kind of value, because they never produce 

one

• Infinite loops can be very annoying
– At least when you wanted to calculate a result

• Infinite loops can be very useful
– I will be upset if my laptop halts to conclude that the value of the operating system is 42
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Which programs stop?

• We can not compute the answer to that
– Suppose that we could, and had a function

halts ( p(x) ) =

if magical_analysis(p(x)) then yes

else no

– Never mind how it works, just suppose that it can take any function p with 
any input x, and answer whether or not it returns

– This lets us write a function that answers only about programs which have 
themselves as input:

halts_on_self ( p ) =

if ( halts (p(p)) ) then yes

else no
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I have a cunning plan...

– We can easily make a function run forever on purpose, so write one which does that when a 
function-checking function halts on itself:

trouble ( p ) =

if ( halts_on_self(p) ) then loop_forever

else yes

– Since 'trouble' is a function-checking function, we can see what it would make of itself:
trouble ( trouble ) =

if ( halts_on_self(trouble) ) then loop_forever

else yes

which is equivalent to
trouble ( trouble ) =

if ( halts(trouble(trouble)) ) then loop_forever

else yes

– If it halts, it should loop forever ; if it loops forever, it should halt.
– This program can not exist, so the halting function can not.
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That's why this gets messy

• We just looked at a pseudocode-y variant of Turing's 
proof that the halting problem is not computable

• It can also be written out in terms of a counting scheme 
and partial recursive functions, but this way may be a bit 
more intuitive

• Bottom line: we can't expect to find well behaved 
functions for every arbitrary program

• Without that, we have to take extra care of how to define 
a program in terms of its function
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Revisiting the operational approach

• Focus was on how a program is executed

• Each syntactic construct is interpreted in terms of the 
steps taken to modify the state it runs in

• The semantic function is described by a recipe for 
how to compute its value (the final state), when it has 
one
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“Denote” (verb):

• To serve as an indication of

• To serve as an arbitrary mark for

• To stand for
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Denotational semantics

• The program is a way to symbolize a semantic 
function

• Its characters are arbitrary, as long as we can 
systematically map them onto the mathematical 
objects they represent
– The string “10” can mean natural number 10 (decimal), 2 (binary), 

16 (hexadecimal)...

– ...in Roman numerals, 10 is “X”...

– The symbol is one thing, what it denotes is another
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Basic parts

• The hallmarks of denotational semantics are
– There is a semantic clause for all basis elements in a category of 

things to symbolize

– For each method of combining them, there is a semantic clause 
which specifies how to combine the semantic functions of the 
constituents
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The simplest illustration

• Take this grammar for arbitrary binary strings:
b → 0

b → 1

b → b 0

b → b 1

• ...and let b,0,1 stand for the symbols in our 
grammar, while {0,1,2,...} are the natural numbers...
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A semantic function

• We can write a function N to attach the natural numbers to 
valid statements in the grammar:

N ( 0 ) = 0

N ( 1 ) = 1

N ( b 0 ) = 2 * N ( b )

N ( b 1 ) = 2 * N ( b ) + 1

• This is just the ordinary interpretation of binary strings as 
unsigned integers, written out all formal-like

• Each notation is related to the mathematical object it 
denotes (here, it's a natural number)
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Finding a value

• Using this formalism, we can write out what the value 
of “1001” is:

N ( 1001 )

= 2 * N ( 100 ) + 1

= 2 * ( 2 * N ( 10 ) ) + 1

= 2 * ( 2 * ( 2 * N ( 1 ) ) ) + 1

= 2 * ( 2 * ( 2 * 1 ) ) + 1

= 2 * ( 4 ) + 1

= 9

N ( 0 ) = 0
N ( 1 ) = 1
N ( b 0 ) = 2 * N ( b )
N ( b 1 ) = 2 * N ( b ) + 1



  

19

Finding a value

N ( 1001 )

= 2 * N ( 100 ) + 1

= 2 * ( 2 * N ( 10 ) ) + 1

= 2 * ( 2 * ( 2 * N ( 1 ) ) ) + 1

= 2 * ( 2 * ( 2 * 1 ) ) + 1

= 2 * ( 4 ) + 1

= 9

Symbols from grammar
are systematically replaced
with their semantic
interpretations

Result is a thing the input can't contain,
and the compiler can't understand
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Is this a valuable thing?

• Well... the example is so small that it's almost pointless
• In principle, however:

– Assume an implementation which sets lowest order bit according to 
last symbol in string, and shifts left to multiply by 2

– In a signed byte-wide register w. 2's complement, this would make the 
value of 11111111 = -1, whereas N(11111111) = 255

– With semantics defined by the implementation, whatever comes out is 
the standard of what's correct

– Semantic specification in hand, we can say that such an 
implementation doesn't do what it's supposed to
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Remember the While 
language:
• Syntax:

a → n | x | a1 + a2 | a1 * a2 | a1 – a2

b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 & b2

S → x := a | skip | S1 ; S2

S → if b then S1 else S2 | while b do S

• Syntactic categories:
n is a numeral

x is a variable

a is an arithmetic expression, valued A[a]

b is a boolean expression, valued B[b]

S is a statement
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Denotational semantics for While

• What we attach to the statements should be a function which 
describes the effect of a statement
– The steps taken to create that effect is presently not our concern

• Skip and assignment are still easy:

Sds [ x:=a ] s = s [ x → A[a]s ] (as before)

Sds [ skip ] = id   (identity function)

• Composition of statements corresponds to composition of 
functions:

Sds [ S1; S2 ] = Sds [ S2 ] ○ Sds [ S1 ]
“S2-function applied to the result of S1-function”, cf. how f ○ g (x) ↔  f ( g ( x ) )
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Conditions need a notation

• Specifically, a function which goes from one boolean and 
two other functions, and results in one of the two functions

• Let's call it cond, and write
Sds [ if b then S1 else S2 ] = cond ( B[b], Sds [S1], Sds [S2] )

with the understanding that, for example,

cond ( B[true], Sds [x:=2], Sds [skip] ) s = s [ x → A[2]s ]

and

cond ( B[false], Sds [x:=2], Sds [skip] ) s = id s
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'while b do S' gets a little tricky

• What we need is a function applied to a function applied to 
a function... as many times as the condition is true

• Problems:
– The program text does not always determine how many times the 

condition will be true
– It is not guaranteed that it ever will be false

• The function we are looking for is specific to each program
– We have a notation to denote “the outcome of the loop body”: Sds[S]

– We need one to denote “the outcome of repeating the loop body an 
unknown number of times”
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Calculating with functionals

• In the manner that a variable is a named placeholder 
for a range of values...

• ...and a function is a named placeholder for a way to 
combine variables...

• ...so a functional F is a generalized range of 
functions, which can stand for any of them
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Functions as unknowns

• This lets us treat a functional F as “the function which fits our 
constraints”
– in the same way we can write x for “the value which fits the constraint x*2+12 = 42”, and 

treat x as the solution to that

• Looking at how to read 'while b do S', we can write out its halting 
condition in terms of cond (from before), and an unknown function g:

F g = cond ( B[b], g ○ Sds[S], id )

• That is: given any function g (as “input”), the functional F represents 
either the effect of applying g to the outcome of the loop body, or the 
identity function, depending on B[b].

• The resulting function can be applied to states where B[b] has a value
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Definition of a “fixed point”

• This is mercifully simple

• A fixed point is where taking an argument and doing 
some stuff to it results in the argument itself

• i.e. when f(x) = x, then x is a fixed point of f

• 2 is a fixed point of f(x) = (x2 / 2x) + 1

• It's “fixed” since it doesn't change no matter how 
many times you apply the function:

x = f(x) = f(f(x)) = f(f(f(x))) = …and so on
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Thus, we can (partly) describe 
the effect of 'while b do S'
• Sds [while b do S] = FIX F

where F g = cond ( B[b], g○Sds[S], id )

• That is, it's a function where it may be the case that
cond(B[b],Sds[S], id ) s = s'

cond(B[b],Sds[S], id ) s' = s''

...

cond(B[b],Sds[S], id ) s(n-1) = s(n)

but eventually,
cond(B[b],Sds[S], id ) s(n) = s(n)

and the loop doesn't alter anything any more.
– That will be the case when it has ended
– When it doesn't end, we can't describe the effect, and no solution should be defined
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So, what's the outcome of a loop?
(Without running it?)

• Take the factorial program we looked at for the operational 
case:

while ¬(x=1) do ( y:=y*x; x:=x-1 )

• We're interested in functions g that satisfy
cond ( B[b], g○Sds[S], id ) s = s

that is,

cond ( B[b], g ○ [x → A[x:=x-1]] ○ [y → A[y*x]], id ) s = s

• Generally, these have the form of the functional
(F g) s = g s if x is different from 1 (do something to the state)

(F g) s = s   if x = 1   (that's the loop halting condition)
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What kind of g fits FIX (F g)?

• Here's one:
g1 = g1 s  if x>1

g1 = s  if x=1

g1 = undef if x<1

• Here's another:
g2 = g2 s  if x>1

g2 = s  if x=1

g2 = s  if x<1

• These are both fixed points of the functional (F g)
– Substitute g1 and g2 into it, you get that

(F g1) s = g1 s

and

(F g2) s = g2 s

Intuitive from program,
Loop eternally into neg. x if
it starts out too small

Also a function which
gives s back when x=1
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An additional constraint

• We can create any number of g-s like this, we want to 
narrow them down into one which reflects what the 
program means

• Since we've abstracted away the implementation, we 
need to say something about which fixed points are 
admissible
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When things loop forever

• If the execution of (while b do S) in state s never halts, 
there is an infinite number of states s1, s2, … such that
– B[b] si = tt  (i.e. the condition is true)

– Sds[S] si = si+1 (i.e. the loop continues to churn through states)

• An immediate example is
while ¬(x=0) do skip

and its matching functional
(F g) s = g s if x is different from 0 in s

(F g) s = s  if x = 0 in s
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Which fixed point are we after?

• The reason we have an infinity to choose from:
– Any g where g s = s if x=0 in s is a fixed point

• The intuition we aim to capture is that
g s = undef if x is different from 0

g s = s if x=0 in s

• Every other g will have to say something about s in at least some cases 
when x isn't 0:

g' s =  undef  if x > 0

g' s = s   if x = 0

g' s = s[y → A[y+1]s] if x < 0
– This also captures the effect of the program when it is defined, but adds a bunch of unrelated 

nonsense about y when it is not defined
– Still a function that captures the effect of the program as much as the other one
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Between the lines

• There is an ordering of all possible choices of g, 
comparing them by how much they specify

• The relationship that
g0 s = s' implies g s = s' (but not the other way around)

indicates that all the effects of g0 are also in g
• Writing this as g0 ≼ g,

(with a slightly bent 'smaller-or-equal' character, to signify that this is a 
different type of comparison than that between numbers)

we get a notion that there is a 'minimal' g
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Making a unique choice

• Add the understanding that 'undef' implies anything 
and everything
– Like 'false' does for the implication in boolean logic

• The least fixed point in this sense is the most concise 
description of a loop's effect
– We'll take that one as the semantic function, then
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Sum total

• Denotational semantics for While:

Sds [ x:=a ] s = s [ x → A[a]s ]

Sds [ skip ] = id

Sds [ S1; S2 ] = Sds [ S2 ] ○ Sds [ S1 ]

Sds [ if b then S1 else S2 ] = cond ( B[b], Sds [S1], Sds [S2] )

Sds [while b do S] = FIX F

where F g = cond ( B[b], g○Sds[S], id )

and FIX F is the least fixed point
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“Precision of an analysis”

• I alluded at one point that there is a notion of more 
and less precise semantic analyses
– and mentioned that it carries a particular meaning of “precise”

• The part about finding the desired fixed point is it.
– “Most precise” is not the fixed point with the most information in

– It is the one which most accurately represents what we know about 
the program



  

38

But seriously, why the...?

• Once again, we have taken an idea that plays a part in 
the curriculum and stretched it, to see how it works out 
when applied to a whole (but small) language

• The result is an algebra of semantic functions
– and a notion that our handle on halting is a fixed point of a semantic 

function
– and an idea that such a function may have multiple fixed points
– and that these relate to each other in an order determined by how 

much information they specify
– ...which I will say just a tiny bit more about next time
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No seriously, why the...?

• Ok. The next (and last) part of theory is a framework for deciding on 
how control flow affects what we can say about the state of a program.

• Its function maps statements to sets of variables, values, etc. to 
reason about the program environment

• It halts on a fixed point of the function which produces those sets of 
things

• It relates that fixed point to other fixed points in a ranking of how 
precise their information is, using an unorthodox choice of operators

• It's pretty much a variant of what we just looked at, except it is 
restricted to capturing state information which enables optimizations
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So, that's what comes next?

• Yes.

• It'll be a little easier to anchor the state information in aspects 
of the source code, but we'll still deal with some properties 
that aren't embodied in the compiler program

• Hopefully, this overview may contribute a way to look at 
dataflow analysis which makes it easier to see a system 
among its details

• If it doesn't, you can figure things out anyway
– Don't lose any sleep over denotational semantics if you can follow DF analysis 

without seeing the correspondence, it's meant as an alternate perspective
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