NTNU - Trondheim

 Norwegian University of Science and TechnologyFixed points

Some key observations from last time

- Denotational semantics describe the function that a program computes
- Finding that function is structured by attaching rules about how to combine functions to all the syntactic elements
- Unlike all the other rules we have attached to syntactic elements in this course, these ones are not instructions for a machine to follow
- A machine can't work out the function of a possibly infinite process, cf. Turing

Some key observations from last time

- They are rather instructions for an Eager Theorist to follow, so that we can work out what the function of a program should be
- A machine can then run an implementation, and if it doesn't evaluate the function that the Eager Theorist prescribed, people can have arguments about whose fault it is
- They could always have such arguments anyway, but in this manner, it will at least be a rigorously structured argument

Where we stopped

- The semantic function of a loop is a fixed point of the functional given by the loop
- A whole bunch of functions can fit that description
- They can be compared with each other according to how much stuff they specify
- The semantic function of a loop can be made unique by picking the smallest fixed point in this ordering

The ordering relation

- With fixed points g, g, the relation $\mathrm{g} \leqslant \mathrm{g}^{\prime}$ means that g shares its effects with g^{\prime}
in the sense that if $\mathrm{g} 1 \mathrm{~s}=\mathrm{s}^{\prime}$, then $\mathrm{g} 2 \mathrm{~s}=\mathrm{s}^{\prime}$
- Take, for instance
- g1 s = s
- g2 s = s if $x>=0$, undef otherwise
- g3 $s=s$ if $x<=0$, undef otherwise
- $\mathrm{g} 4 \mathrm{~s}=\mathrm{s}$ if $\mathrm{x}=0$, undef otherwise
- $\mathrm{g} 4 \leqslant \mathrm{~g} 4$
- $\mathrm{g} 4 \leqslant \mathrm{~g} 2$ and $\mathrm{g} 4 \leqslant \mathrm{~g} 3$
- g2, g3 aren't related
- $\mathrm{g} 2 \leqslant \mathrm{~g} 1$ and $\mathrm{g} 3 \leqslant \mathrm{~g} 1$
(it has the same effect as itself)
(they're the same in $x=0$)
(they're defined in different places)
(and it follows that $\mathrm{g} 4 \preccurlyeq \mathrm{~g} 1$)

We can draw this

- The line between g4 and g1 is omitted, because it follows by tracing a path through g2 or g3
- This is called a Hasse diagram, it depicts a partially ordered set, you can find such diagrams in
- Algebra books
- Dragon, chapter 9 (when we get there)

Partially ordered sets

- These are defined by
- A pile of things (the set)
- Some badly disfigured comparison operator that looks like $\leqslant, \subseteq, \square$ or similar, to clarify that it's special (the ordering relation)
- They're partially ordered because the relation doesn't have to specify orders between all pairs of things (such as g2, g3)
- Total orders (like the usual comparison of real numbers) puts all things in relations to each other, so the Hasse diagram just becomes a long line

The ordering relation

For an order like this to work out, the chosen relation has to be

- Reflexive (things relate to themselves)
- $\mathrm{x} \leqslant \mathrm{x}$
- Transitive (relation preserved across in-betweens)
$-x \leqslant y$ and $y \leqslant z$ means that $x \leqslant z$
- Anti-symmetric (things relate in 1 direction only)
$-\mathrm{x} \leqslant \mathrm{y}$ and $\mathrm{y} \leqslant \mathrm{x}$ means that $\mathrm{x}=\mathrm{y}$

It's time to stop now

- By continuing to vigorously wave my hands, I could attempt to convince you that when a loop's functional has multiple fixed points, the shares-effect relation always creates an order with a unique minimum in it
- Thereby arguing that the D.S. for While is, in fact, a complete specification of the programs that have values
- We have already seen all the parts I wanted to show you, so we can return to Earth and spend our time on looking at them instead

Some properties are computable

It's the list we can do department

- Even though we can't automate the whole business of figuring out what a program computes, there are many semantic properties that match functions we can evaluate automatically
- You've probably noticed that the VSL compiler perfectly well can be programmed to detect uses of undeclared variables, for instance
- Some of those can reveal ways to rewrite the program without altering its meaning

What if, say, x is assigned exactly once?

foo($z)$	\rightarrow	foo($z)$
$x=1$		
$y=x$	\rightarrow	$y=1$
$z=x+y$	\rightarrow	$z=1+y$
$\operatorname{bar}(z)$	\rightarrow	$\operatorname{bar}(z)$
etc.		

Same program, less space and time

The constant-ness of x

Statement
Is x a constant?
foo(x)
$x=1$
$y=x$
$\mathrm{x}=2$
$z=x+y$
$\operatorname{bar}(z)$

The constant-ness of x

Statement Is x a constant?
foo(x)
x is undefined
$\mathrm{x}=1$
$y=x$
$x=2$
z=x+y
bar(z)

The constant-ness of x

Statement
foo(x)
$\mathrm{x}=1$
$y=x$
$x=2$
z=x+y
bar(z)
Is x a constant?
x is undefined
so far, it's 1

The constant-ness of x

Statement Is x a constant?
foo(x)
x is undefined
$\mathrm{x}=1$
$y=x$
so far, it's 1
so far, it's 1
$x=2$
z=x+y
bar(z)

The constant-ness of x

Statement Is x a constant?
foo(x)
x is undefined
$\mathrm{x}=1$
$y=x$
$x=2$
$z=x+y$
bar(z)
so far, it's 1
so far, it's 1
no, it can't be

The constant-ness of x

Statement	Is x a constant?
foo (x)	x is undefined
$x=1$	so far, it's 1
$y=x$	so far, it's 1
$x=2$	no, it can't be
$z=x+y$	no
$\operatorname{bar}(z)$	

The constant-ness of x

Statement
foo(x)
$\mathrm{x}=1$
$y=x$
$x=2$
z=x+y
bar(z)

Is x a constant?
x is undefined
so far, it's 1
so far, it's 1
no, it can't be
no
no

The constant-ness of x

Statement
foo(x)
$\mathrm{x}=1$
$y=x$
$x=2$
z=x+y
bar(z)

- Etc.

Is x a constant?
x is undefined
so far, it's 1
so far, it's 1
no, it can't be
no
no
no forever after

An order of constant-ness points

- A) While x is not defined, it is unknown
- B) When x is first defined to 1 , it is possibly constant
- C) When x is redefined to 2 , it is certainly not constant
- That is...
- undef $\leqslant 1 \leqslant$ not-a-constant
- If x were first defined to 36 , it's also true that...
- undef $\leqslant 36 \leqslant$ not-a-constant

The Hasse diagram

Not a constant

undef

Monotonicity

- When we evaluate the function of a statement in the constant-ness sense, x either stays where it is, or moves up the order
- It can't be determined as variable and then later return to having a constant value
- A function f of points x, y in the order is monotone if it preserves the order of points, that is,
- If $x \leqslant y$, then $f(x) \leqslant f(y)$ also

Peeking into the crystal ball

- We're going to capture a few different semantic properties by defining the effect of statements as a function between states that represent
- Sets of variables that may (or will certainly not) be used again,
- Sets which map uses to definitions they may (or certainly) match,
- Sets of expressions that were already evaluated and may (or certainly) still hold the same value,
- ...and such things

Pleasant properties to look for

- We will define those functions so that they reach a fixed point when they describe the program as accurately as they can
- They will be monotone wrt. a partial ordering of the states, so that they always land somewhere along a path from one end to the other
- The partial orders will have a similar structure to the one we just saw, with a top and a bottom that all paths lead between
- This guarantees that a monotone function always reaches a fixed point sooner or later - at the top, there is nowhere left to go

This was an attempt at providing "perspective"

- The actual functions and their associated meanings will have to be covered when everyone can be here
- I'll say everything about orders and relations and diagrams over again, with a bit more texture
- Still, it may be easier to recognize them after having thought about it, than to meet them for the first time
- I hope you (will) feel it was worth your time
- Have a peaceful Easter

