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Fixed points
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Some key observations from last time

• Denotational semantics describe the function that a 
program computes

• Finding that function is structured by attaching rules 
about how to combine functions to all the syntactic 
elements

• Unlike all the other rules we have attached to 
syntactic elements in this course, these ones are not 
instructions for a machine to follow
– A machine can't work out the function of a possibly infinite process, 

cf. Turing
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Some key observations from last time

• They are rather instructions for an Eager Theorist to 
follow, so that we can work out what the function of a 
program should be

• A machine can then run an implementation, and if it 
doesn't evaluate the function that the Eager Theorist 
prescribed, people can have arguments about whose 
fault it is

• They could always have such arguments anyway, but 
in this manner, it will at least be a rigorously 
structured argument
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Where we stopped

• The semantic function of a loop is a fixed point of the 
functional given by the loop

• A whole bunch of functions can fit that description

• They can be compared with each other according to 
how much stuff they specify

• The semantic function of a loop can be made unique 
by picking the smallest fixed point in this ordering
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The ordering relation

• With fixed points g, g', the relation g≼g' means that g shares its 
effects with g'

in the sense that if g1 s = s', then g2 s = s'

• Take, for instance
– g1 s = s

– g2 s = s if x>=0, undef otherwise

– g3 s = s if x<=0, undef otherwise

– g4 s = s if x=0, undef otherwise

• g4≼g4   (it has the same effect as itself) 

• g4≼g2 and g4≼g3 (they're the same in x=0)

• g2, g3 aren't related (they're defined in different places)

• g2≼g1 and g3≼g1 (and it follows that g4≼g1)
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We can draw this

• The line between g4 and g1 is omitted, because it follows by tracing a 
path through g2 or g3

• This is called a Hasse diagram, it depicts a partially ordered set, you can 
find such diagrams in
– Algebra books

– Dragon, chapter 9 (when we get there)

g4

g2 g3

g1
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Partially ordered sets

• These are defined by
– A pile of things (the set)
– Some badly disfigured comparison operator that looks like ≼, ,   

or similar, to clarify that it's special (the ordering relation)

• They're partially ordered because the relation doesn't 
have to specify orders between all pairs of things 
(such as g2, g3)

• Total orders (like the usual comparison of real 
numbers) puts all things in relations to each other, so 
the Hasse diagram just becomes a long line



  

8

The ordering relation

For an order like this to work out, the chosen relation 
has to be

• Reflexive (things relate to themselves)
– x ≼ x

• Transitive (relation preserved across in-betweens) 
– x ≼ y and y ≼ z means that x ≼ z

• Anti-symmetric (things relate in 1 direction only)
– x ≼ y and y ≼ x means that x = y 
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It's time to stop now

• By continuing to vigorously wave my hands, I could 
attempt to convince you that when a loop's functional 
has multiple fixed points, the shares-effect relation 
always creates an order with a unique minimum in it
– Thereby arguing that the D.S. for While is, in fact, a complete 

specification of the programs that have values

• We have already seen all the parts I wanted to show 
you, so we can return to Earth and spend our time on 
looking at them instead
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Some properties are computable
It's the list we can do department

• Even though we can't automate the whole business 
of figuring out what a program computes, there are 
many semantic properties that match functions we 
can evaluate automatically
– You've probably noticed that the VSL compiler perfectly well can be 

programmed to detect uses of undeclared variables, for instance

• Some of those can reveal ways to rewrite the 
program without altering its meaning
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What if, say, x is assigned exactly once?

foo(z) → foo(z)

x = 1

y = x → y = 1

z = x+y → z = 1+y

bar(z) → bar(z)

etc.

Same program, less space and time
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The constant-ness of x

Statement Is x a constant?

foo(x)

x=1

y=x

x=2

z=x+y

bar(z)
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The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1

y=x

x=2

z=x+y

bar(z)
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The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x

x=2

z=x+y

bar(z)
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The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2

z=x+y

bar(z)
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The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y

bar(z)
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The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y no

bar(z)
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The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y no

bar(z) no
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The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y no

bar(z) no

• Etc. no forever after
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An order of constant-ness points

• A) While x is not defined, it is unknown

• B) When x is first defined to 1, it is possibly constant

• C) When x is redefined to 2, it is certainly not 
constant

• That is...
– undef ≼ 1 ≼ not-a-constant

• If x were first defined to 36, it's also true that...
– undef ≼ 36 ≼ not-a-constant
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The Hasse diagram

undef

-2 -1 0 1 2... ...

Not a constant



  

22

Monotonicity

• When we evaluate the function of a statement in the 
constant-ness sense, x either stays where it is, or 
moves up the order

• It can't be determined as variable and then later 
return to having a constant value

• A function f of points x, y in the order is monotone if it 
preserves the order of points, that is,
– If x ≼ y, then f(x) ≼ f(y) also
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Peeking into the crystal ball

• We're going to capture a few different semantic 
properties by defining the effect of statements as a 
function between states that represent
– Sets of variables that may (or will certainly not) be used again,
– Sets which map uses to definitions they may (or certainly) match,

– Sets of expressions that were already evaluated and may (or 
certainly) still hold the same value,

– ...and such things
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Pleasant properties to look for

• We will define those functions so that they reach a fixed 
point when they describe the program as accurately as 
they can

• They will be monotone wrt. a partial ordering of the 
states, so that they always land somewhere along a 
path from one end to the other

• The partial orders will have a similar structure to the one 
we just saw, with a top and a bottom that all paths lead 
between
– This guarantees that a monotone function always reaches a fixed point 

 sooner or later – at the top, there is nowhere left to go



  

25

This was an attempt at 
providing “perspective”
• The actual functions and their associated meanings 

will have to be covered when everyone can be here

• I'll say everything about orders and relations and 
diagrams over again, with a bit more texture

• Still, it may be easier to recognize them after having 
thought about it, than to meet them for the first time

• I hope you (will) feel it was worth your time

• Have a peaceful Easter
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