

1

Fixed points

2

Some key observations from last time

• Denotational semantics describe the function that a
program computes

• Finding that function is structured by attaching rules
about how to combine functions to all the syntactic
elements

• Unlike all the other rules we have attached to
syntactic elements in this course, these ones are not
instructions for a machine to follow
– A machine can't work out the function of a possibly infinite process,

cf. Turing

3

Some key observations from last time

• They are rather instructions for an Eager Theorist to
follow, so that we can work out what the function of a
program should be

• A machine can then run an implementation, and if it
doesn't evaluate the function that the Eager Theorist
prescribed, people can have arguments about whose
fault it is

• They could always have such arguments anyway, but
in this manner, it will at least be a rigorously
structured argument

4

Where we stopped

• The semantic function of a loop is a fixed point of the
functional given by the loop

• A whole bunch of functions can fit that description

• They can be compared with each other according to
how much stuff they specify

• The semantic function of a loop can be made unique
by picking the smallest fixed point in this ordering

5

The ordering relation

• With fixed points g, g', the relation g≼g' means that g shares its
effects with g'

in the sense that if g1 s = s', then g2 s = s'

• Take, for instance
– g1 s = s

– g2 s = s if x>=0, undef otherwise

– g3 s = s if x<=0, undef otherwise

– g4 s = s if x=0, undef otherwise

• g4≼g4 (it has the same effect as itself)

• g4≼g2 and g4≼g3 (they're the same in x=0)

• g2, g3 aren't related (they're defined in different places)

• g2≼g1 and g3≼g1 (and it follows that g4≼g1)

6

We can draw this

• The line between g4 and g1 is omitted, because it follows by tracing a
path through g2 or g3

• This is called a Hasse diagram, it depicts a partially ordered set, you can
find such diagrams in
– Algebra books

– Dragon, chapter 9 (when we get there)

g4

g2 g3

g1

7

Partially ordered sets

• These are defined by
– A pile of things (the set)
– Some badly disfigured comparison operator that looks like ≼, ,

or similar, to clarify that it's special (the ordering relation)

• They're partially ordered because the relation doesn't
have to specify orders between all pairs of things
(such as g2, g3)

• Total orders (like the usual comparison of real
numbers) puts all things in relations to each other, so
the Hasse diagram just becomes a long line

8

The ordering relation

For an order like this to work out, the chosen relation
has to be

• Reflexive (things relate to themselves)
– x ≼ x

• Transitive (relation preserved across in-betweens)
– x ≼ y and y ≼ z means that x ≼ z

• Anti-symmetric (things relate in 1 direction only)
– x ≼ y and y ≼ x means that x = y

9

It's time to stop now

• By continuing to vigorously wave my hands, I could
attempt to convince you that when a loop's functional
has multiple fixed points, the shares-effect relation
always creates an order with a unique minimum in it
– Thereby arguing that the D.S. for While is, in fact, a complete

specification of the programs that have values

• We have already seen all the parts I wanted to show
you, so we can return to Earth and spend our time on
looking at them instead

10

Some properties are computable
It's the list we can do department

• Even though we can't automate the whole business
of figuring out what a program computes, there are
many semantic properties that match functions we
can evaluate automatically
– You've probably noticed that the VSL compiler perfectly well can be

programmed to detect uses of undeclared variables, for instance

• Some of those can reveal ways to rewrite the
program without altering its meaning

11

What if, say, x is assigned exactly once?

foo(z) → foo(z)

x = 1

y = x → y = 1

z = x+y → z = 1+y

bar(z) → bar(z)

etc.

Same program, less space and time

12

The constant-ness of x

Statement Is x a constant?

foo(x)

x=1

y=x

x=2

z=x+y

bar(z)

13

The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1

y=x

x=2

z=x+y

bar(z)

14

The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x

x=2

z=x+y

bar(z)

15

The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2

z=x+y

bar(z)

16

The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y

bar(z)

17

The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y no

bar(z)

18

The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y no

bar(z) no

19

The constant-ness of x

Statement Is x a constant?

foo(x) x is undefined

x=1 so far, it's 1

y=x so far, it's 1

x=2 no, it can't be

z=x+y no

bar(z) no

• Etc. no forever after

20

An order of constant-ness points

• A) While x is not defined, it is unknown

• B) When x is first defined to 1, it is possibly constant

• C) When x is redefined to 2, it is certainly not
constant

• That is...
– undef ≼ 1 ≼ not-a-constant

• If x were first defined to 36, it's also true that...
– undef ≼ 36 ≼ not-a-constant

21

The Hasse diagram

undef

-2 -1 0 1 2... ...

Not a constant

22

Monotonicity

• When we evaluate the function of a statement in the
constant-ness sense, x either stays where it is, or
moves up the order

• It can't be determined as variable and then later
return to having a constant value

• A function f of points x, y in the order is monotone if it
preserves the order of points, that is,
– If x ≼ y, then f(x) ≼ f(y) also

23

Peeking into the crystal ball

• We're going to capture a few different semantic
properties by defining the effect of statements as a
function between states that represent
– Sets of variables that may (or will certainly not) be used again,
– Sets which map uses to definitions they may (or certainly) match,

– Sets of expressions that were already evaluated and may (or
certainly) still hold the same value,

– ...and such things

24

Pleasant properties to look for

• We will define those functions so that they reach a fixed
point when they describe the program as accurately as
they can

• They will be monotone wrt. a partial ordering of the
states, so that they always land somewhere along a
path from one end to the other

• The partial orders will have a similar structure to the one
we just saw, with a top and a bottom that all paths lead
between
– This guarantees that a monotone function always reaches a fixed point

 sooner or later – at the top, there is nowhere left to go

25

This was an attempt at
providing “perspective”
• The actual functions and their associated meanings

will have to be covered when everyone can be here

• I'll say everything about orders and relations and
diagrams over again, with a bit more texture

• Still, it may be easier to recognize them after having
thought about it, than to meet them for the first time

• I hope you (will) feel it was worth your time

• Have a peaceful Easter

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

