

1

Operational semantics
(Extracurricular perspective,
 there will be no quiz questions on this)

TDT4205 – Operational semantics

2

Once again, from the top

• Lexically, a language is just a pile of units which can’t
be divided without losing or altering their meaning
– Written English is nicely partitioned by punctuation and spacing

(eventhoughyoucanstillreaditwithoutthemitisjustharder)

– Words like tigerlily get their own places in the dictionary

– If we could generalize from tigers and lilies to combine arbitrary
animals and flowers, it would be syntactical

...but it’s the name of a thing, that’s something else…

...so it gets to be its own lexical entity.

3

Syntax (grammar)

We ← subjects are nouns, pronouns

form ← verbs determine the predicate

sentences ← direct objects are nouns, pronouns

correctly. ← adverbials are adverbs

In English, syntactic function is mostly determined by the position
of a word in a statement.

(Other langauges do it by declining the words instead, but I have
yet to see a programming language which handles it that way)

4

At the edge of meaning

• Syntactically correct statements don’t necessarily “mean”
anything.

“Colorless green ideas sleep furiously”

In a way, it means that we have an illustration of a meaningless, yet
syntactically correct statement, but you would never know from the
statement taken out of this context.

• The grammars we’ve been noodling with are called
context-free

• That’s because they aren’t the least bit helpful in
separating statements from properly structured nonsense

5

Meaning is a tricky word

• “birds of a feather” ← idiomatically, has little to
do with actual birds

• “a big heart” ← pragmatically, means one
thing in a festive speech,
and another in hospitals

• ← semiotically, means that
this substance will ruin your
dinner

• Even changing typefaces alters how we
perceive things

NTNU
...it’s all different kinds of meaning….

6

Program semantics =
program meaning
• ...for very carefully selected values of meaning

• Semantics connect a statement and its environment to
the structure of the statement itself

• That is, for a statement like “divide x in two equal parts”
– If x is a number, divide it by two (both halves will be equal)
– If x is a string, chop it up in the middle
– If x is a cake…

...you get the picture

• Programming language semantics usually have a lot to
do with types, and how to organize them

7

Flavors of semantics

• Painting with broad strokes, we have
– Operational semantics, which describe the meaning of a statement in terms of

what you do to the environment in order to create its effect
– Denotational semantics, which describe how the environment is affected by a

statement without specifying the steps taken to make it so
– Axiomatic semantics, which describe properties of the environment which are

preserved throughout a statement

• This is a subject unto itself, which we shall mostly leave alone
– It’s of greater interest to the language design folks anyway

• Nevertheless, we should touch upon it
– A compiler must respect the source language semantics
– Otherwise, it becomes a compiler for a different language

8

Why I am showing you this

• Looking at what the Dragon has to say about types, one might get
the impression that semantics has to do with syntax tree traversal
order
– Dragon attaches type information in the notation of attribute grammars, and puts it in

semantic actions, cf. order restrictions of L- and S- attribution (subchapters 6.3, 6.5)

• A bit of perspective can be harvested if we take 2 steps back and
look at the topic from afar

• Therefore, I feel it is appropriate to do that

• Naturally, I think that you should feel this way also.
(We are taking a detour from the syllabus, though, it doesn’t say anything about what
I will tell you today)

9

A small language to look at

• This is the syntax of the While language*:
a → n | x | a1 + a2 | a1 * a2 | a1 – a2

b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 & b2

S → x := a | skip | S1 ; S2

S → if b then S1 else S2 | while b do S

• We assume a lexical specification so that
– n is a numeral (Num)
– x is a variable (Var)
– a is an arithmetic expression (Aexp), with the value A[a]
– b is a boolean expression (Bexp), with the value B[b]
– S is a statement (Stm)

*unceremoniously borrowed from the book “Semantics with Applications: An Appetizer”,
Nielson & Nielson (2007)

10

In plain English

• We need a notation to talk about how statements
affect their environment

[x→1, y→2] means “x is 1 and y is 2 in this state”

s means a final state after some statement

< S, s > means statement S is executed in state s

A[a] s means the value of a in state s

B[b] s = tt means that b is true in state s

B[b] s = ff means that b is false in state s

11

Operational semantics

• This is a name for the style of semantic specifications
that represent program execution using operations on
the environment
– You can invent your own, there isn’t a final list of all the ways to take

this approach

• To get a feel for what they’re like, we will define the
While language in two ultimately equivalent ways:
– Natural semantics

– Structural operational semantics

(These are names for specific notations)

12

Natural semantics

• Natural semantics describe what a state is like before
a statement, and after it

• Everything that’s true about the program is written in
the form < S, s > → s’

• This indicates that running a (possibly compound)
statement S when the system is in state s will
– Stop at some point

– Leave the system in state s’ afterwards

13

A first rule

• The simplest statement we’ve got is one that has no
effect at all:

< skip, s > → s

• That is, executing ‘skip’ in state s doesn’t alter the
state s at all

• Specifying natural semantics is a game of hocking up
rules like this one for all types of statements
permitted by the grammar

14

Assignments

< x := a, s > → s [x → A[a] s]

• Our end state (s’) here is “s [x → A[a] s]”

• This means that executing “x := a” in state s turns it into state
s again, except that x is now bound to the value of expression
a, as evaluated in state s

Applying another assignment like “y := x” afterwards gives us

< y := x, s [x→A[a]s] > → s [x→A[a]s] [y→A[x] s[x→A[a]s]]

but it’s more readable to write in two steps and substitute

< x := a, s > → s [x → A[a] s] (s’ = s [x → A[a] s]),

< y := x, s’ > → s’ [y → A[x] s’] (s’’ = s’ [y → A[x] s’]),

...and so on, from s’’.

15

Composition

• When statement S2 follows S1, we write

<S1, s> → s’ <S2, s’> → s’’

<S1;S2, s> → s’’

to mean that S1 goes from s to s’, S2 from s’ to s’’

• The immediate constituents above the line are our
premises, what’s below is the conclusion

• Skip and assignment rules don’t have any premises,
that makes them axioms

16

If in two flavors

• If, when it is taken, (i.e. when B[b]s=tt) says that

 <S1, s> → s’

<if b then S1 else S2, s> → s’
• If, when it is not taken, (i.e. when B[b]s=ff) says that

 <S2,s> → s’

<if b then S1 else S2, s> → s’
• All it means is that S1 modifies s when b is true, and that S2

gets to do it when b is false
(it really is just a strict notation to summarize how we intuitively want if statements to work)

17

While in two flavors

• When B[b]=tt

<S, s> → s’ <while b do S, s’> → s’’

 <while b do S, s> → s’’

and when B[b]=ff

<while b do S, s> → s

• That is, when the condition is true, S runs once more

• When the condition is false, while is just like skip

18

The semantic function S
NS

• This whole specification lets us math-ify the effect of
any statement S in the language, to think of it as a
partial function from state to state:

SNS [S] = s’ when <S,s> → s’

SNS [S] = undef otherwise

19

Structural operational
semantics
• We can also specify semantics in a more detailed,

explicit step-by-step manner

• Let the relation => be either
between two configurations <S,s> => <S',s'>

from a configuration to a state <S,s> => s'

• The idea is to write out not just what statements do to
a state in the end, but also all the steps taken in order
to make it so

20

Skip is still easy

<skip, s> => s

• As before, this doesn't do anything by design

21

Assignment

<x:=a, s> => s[x → A[a]s]

• This looks pretty much the same as well, an
assignment gives a value to a variable

22

Composition 1

 <S1,s> => <S1',s'>

<S1;S2, s> => <S1';S2, s'>

• This is because we haven't assumed that
(compound) statements run to completion, so their
intermediate work must be represented

• Here, S1 is not finished yet

23

Composition 2

 <S1,s> => s'

<S1;S2, s> => <S2, s'>

• Here, S1 completes, resulting in a state which S2 can
get to work on

24

If in two flavors

<if b then S1 else S2, s> => <S1, s> when B[b]s=tt

<if b then S1 else S2, s> => <S2, s> when B[b]s=ff

• These look a little more like how programmers
mentally run programs in their minds

• i.e. “S1 runs when condition is true, S2 runs
otherwise”

25

While

<while b do S, s> =>

<if b then (S; while b do S) else skip, s>

• This is an equivalence which makes 1 (more)
iteration explicit in terms of condition and loop body

(and leaves the next iteration to be evaluated when
we get there)

26

The semantic function S
SOS

[S]

• As before, we can look at this as a computable
function between configurations/states, parametric in
the statement

• For all statements S in the language,

SSOS[S] = s when S =>* s completes

SSOS[S] = undef otherwise

27

S
NS

[S] = S
SOS

[S]

• These two specifications give the exact same
interpretation of While programs

• Maybe you can see it, we won’t spend time on
proving it

• One of the things that says, is that the N.S. notation
can be elaborated into every tiny sub-step, it’s not
missing any detail

• It’s much shorter to write, so that will do

28

This is some kind of logic

• Natural deduction is a formalism like this which was
invented before digital computers, in an inter-war era
attempt to write formal rules for common-sense
reasoning
– The sort of thing philosophers like to do

• Natural semantics emerges when you try to use such
rules specifically to describe what a computer
program does, it turns into states and steps

29

Looks like an intricate way to
write the obvious
• Fundamental things do, once they’re discovered
• If we pretend that high and low voltages represent 1

and 0, arithmetic and processing circuits are the same
thing
– We didn’t know before Claude Shannon noticed it

• If we represent state changes in axiomatic logic,
running a program and constructing a proof is the
same thing
– We didn’t know before Haskell Curry and William Howard noticed it

30

But what’s the point?

• If you have a program and its proof, all it really means
is that you wrote the same thing twice:
– Once in source code
– Once with pen and paper

• The point is to detach what a program is supposed to
do from what the compiler’s translation actually does
– If you have only the compiler’s interpretation, that’s what defines the

meaning of the program
– If you have another definition handy, you can find it out if the compiler

makes mistakes

31

Language specifications

• As you may have noticed, working out appropriate rules
and proof trees takes a lot of effort even for a tiny toy
language

• With a few notable exceptions, language standards
tend to be explained by thick books in English instead,
as unambiguously as the standard committee manages
to write it

• Formal definitions tend to be reserved for limited
situations where mistakes are incredibly expensive

32

Sidebar:

Our language specification

• If you haven’t noticed yet, you will: the VSL language
we implement in the exercises is neither completely
nor formally specified

• I don’t think that’s actually a bad thing:
– Even if I wrote a 100 pages of illegible definitions, I would probably

still miss some subtle point lurking in a corner

– When you find something under-specified, it makes you consider
what you think the language should mean, and how to implement it

33

...no, really - what’s the point?

• Oh, all right.
• If you take the states and their changes out of the

notation, you’re left with the logical inferences you can
make about program semantics based only on what the
source text says

• That’s what a static type system does
• I like today’s notation better than the book’s way to write

type checking rules, so I plan to use it for that.
(It is, in fact, equivalent, just wanted to introduce it)

34

The Great PerspectiveTM

• If we disregard the notation thing, there are still two great ideas here:

1) There are ways to show that a systematic way to change a program can
leave its meaning alone

(Semantics-preserving transformation is what an optimizer does)

2) You can think of a block of statements as a way to write down its
semantic function

• Both of these ideas can bring order to the understanding of dataflow
analysis, at the end of the semester

• You can understand dataflow analysis without them too, I just think they’re
a lot easier to grasp when you meet them for the 2nd time, after leaving
them alone a while

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

