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Operational semantics
(Extracurricular perspective,
 there will be no quiz questions on this)

TDT4205 – Operational semantics
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Once again, from the top

• Lexically, a language is just a pile of units which can’t 
be divided without losing or altering their meaning
– Written English is nicely partitioned by punctuation and spacing 

(eventhoughyoucanstillreaditwithoutthemitisjustharder)

– Words like tigerlily get their own places in the dictionary

– If we could generalize from tigers and lilies to combine arbitrary 
animals and flowers, it would be syntactical

...but it’s the name of a thing, that’s something else…

...so it gets to be its own lexical entity.
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Syntax (grammar)

We  ← subjects are nouns, pronouns

form ← verbs determine the predicate

sentences ← direct objects are nouns, pronouns

correctly. ← adverbials are adverbs

In English, syntactic function is mostly determined by the position 
of a word in a statement.

(Other langauges do it by declining the words instead, but I have 
yet to see a programming language which handles it that way)
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At the edge of meaning

• Syntactically correct statements don’t necessarily “mean” 
anything.

“Colorless green ideas sleep furiously”

In a way, it means that we have an illustration of a meaningless, yet 
syntactically correct statement, but you would never know from the 
statement taken out of this context.

• The grammars we’ve been noodling with are called 
context-free

• That’s because they aren’t the least bit helpful in 
separating statements from properly structured nonsense
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Meaning is a tricky word

• “birds of a feather” ← idiomatically, has little to 
do with actual birds

• “a big heart” ← pragmatically, means one 
thing in a festive speech, 
and another in hospitals

•  ← semiotically, means that
this substance will ruin your
dinner

• Even changing typefaces alters how we 
perceive things

NTNU
...it’s all different kinds of meaning….
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Program semantics =
program meaning
• ...for very carefully selected values of meaning

• Semantics connect a statement and its environment to 
the structure of the statement itself

• That is, for a statement like “divide x in two equal parts”
– If x is a number, divide it by two (both halves will be equal)
– If x is a string, chop it up in the middle
– If x is a cake…

...you get the picture

• Programming language semantics usually have a lot to 
do with types, and how to organize them
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Flavors of semantics

• Painting with broad strokes, we have
– Operational semantics, which describe the meaning of a statement in terms of 

what you do to the environment in order to create its effect
– Denotational semantics, which describe how the environment is affected by a 

statement without specifying the steps taken to make it so
– Axiomatic semantics, which describe properties of the environment which are 

preserved throughout a statement

• This is a subject unto itself, which we shall mostly leave alone
– It’s of greater interest to the language design folks anyway

• Nevertheless, we should touch upon it
– A compiler must respect the source language semantics
– Otherwise, it becomes a compiler for a different language
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Why I am showing you this

• Looking at what the Dragon has to say about types, one might get 
the impression that semantics has to do with syntax tree traversal 
order
– Dragon attaches type information in the notation of attribute grammars, and puts it in 

semantic actions, cf. order restrictions of L- and S- attribution (subchapters 6.3, 6.5)

• A bit of perspective can be harvested if we take 2 steps back and 
look at the topic from afar

• Therefore, I feel it is appropriate to do that

• Naturally, I think that you should feel this way also.
(We are taking a detour from the syllabus, though, it doesn’t say anything about what 
I will tell you today)
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A small language to look at

• This is the syntax of the While language*:
a → n | x | a1 + a2 | a1 * a2 | a1 – a2

b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 & b2

S → x := a | skip | S1 ; S2

S → if b then S1 else S2 | while b do S

• We assume a lexical specification so that
– n is a numeral (Num)
– x is a variable (Var)
– a is an arithmetic expression (Aexp), with the value A[a]
– b is a boolean expression (Bexp), with the value B[b]
– S is a statement (Stm)

*unceremoniously borrowed from the book “Semantics with Applications: An Appetizer”,
Nielson & Nielson (2007)
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In plain English

• We need a notation to talk about how statements 
affect their environment

[x→1, y→2] means “x is 1 and y is 2 in this state”

s means a final state after some statement

< S, s > means statement S is executed in state s

A[a] s means the value of a in state s

B[b] s = tt means that b is true in state s

B[b] s = ff means that b is false in state s
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Operational semantics

• This is a name for the style of semantic specifications 
that represent program execution using operations on 
the environment
– You can invent your own, there isn’t a final list of all the ways to take 

this approach

• To get a feel for what they’re like, we will define the 
While language in two ultimately equivalent ways:
– Natural semantics

– Structural operational semantics

(These are names for specific notations)
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Natural semantics

• Natural semantics describe what a state is like before 
a statement, and after it

• Everything that’s true about the program is written in 
the form < S, s > → s’

• This indicates that running a (possibly compound) 
statement S when the system is in state s will
– Stop at some point

– Leave the system in state s’ afterwards
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A first rule

• The simplest statement we’ve got is one that has no 
effect at all:

< skip, s > → s

• That is, executing ‘skip’ in state s doesn’t alter the 
state s at all

• Specifying natural semantics is a game of hocking up 
rules like this one for all types of statements 
permitted by the grammar
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Assignments

< x := a, s > → s [ x → A[a] s ]

• Our end state (s’) here is “s [ x → A[a] s ]”

• This means that executing “x := a” in state s turns it into state 
s again, except that x is now bound to the value of expression 
a, as evaluated in state s

Applying another assignment like “y := x” afterwards gives us

< y := x, s [x→A[a]s] > → s [x→A[a]s] [y→A[x] s[x→A[a]s] ]

but it’s more readable to write in two steps and substitute

< x := a, s > → s [ x → A[a] s ] ( s’ = s [ x → A[a] s ] ),

< y := x, s’ > → s’ [y → A[x] s’] ( s’’ = s’ [y → A[x] s’] ),

...and so on, from s’’.
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Composition

• When statement S2 follows S1, we write

<S1, s> → s’                  <S2, s’> → s’’

<S1;S2, s> → s’’

to mean that S1 goes from s to s’, S2 from s’ to s’’

• The immediate constituents above the line are our 
premises, what’s below is the conclusion

• Skip and assignment rules don’t have any premises, 
that makes them axioms
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If in two flavors

• If, when it is taken, (i.e. when B[b]s=tt) says that

           <S1, s> → s’                

<if b then S1 else S2, s> → s’
• If, when it is not taken, (i.e. when B[b]s=ff) says that

            <S2,s> → s’                

<if b then S1 else S2, s> → s’
• All it means is that S1 modifies s when b is true, and that S2 

gets to do it when b is false
(it really is just a strict notation to summarize how we intuitively want if statements to work)
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While in two flavors

• When B[b]=tt

<S, s> → s’                 <while b do S, s’> → s’’

                   <while b do S, s> → s’’

and when B[b]=ff

<while b do S, s> → s

• That is, when the condition is true, S runs once more

• When the condition is false, while is just like skip
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The semantic function S
NS

• This whole specification lets us math-ify the effect of 
any statement S in the language, to think of it as a 
partial function from state to state:

SNS [S] = s’ when <S,s> → s’

SNS [S] = undef otherwise
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Structural operational 
semantics
• We can also specify semantics in a more detailed, 

explicit step-by-step manner

• Let the relation => be either
between two configurations <S,s> => <S',s'>

from a configuration to a state <S,s> => s'

• The idea is to write out not just what statements do to 
a state in the end, but also all the steps taken in order 
to make it so
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Skip is still easy

<skip, s> => s

• As before, this doesn't do anything by design
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Assignment

<x:=a, s> => s[x → A[a]s]

• This looks pretty much the same as well, an 
assignment gives a value to a variable
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Composition 1

       <S1,s> => <S1',s'>      

<S1;S2, s> => <S1';S2, s'>

• This is because we haven't assumed that 
(compound) statements run to completion, so their 
intermediate work must be represented

• Here, S1 is not finished yet
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Composition 2

          <S1,s> => s'       

<S1;S2, s> => <S2, s'>

• Here, S1 completes, resulting in a state which S2 can 
get to work on
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If in two flavors

<if b then S1 else S2, s> => <S1, s> when B[b]s=tt

<if b then S1 else S2, s> => <S2, s> when B[b]s=ff

• These look a little more like how programmers 
mentally run programs in their minds

• i.e. “S1 runs when condition is true, S2 runs 
otherwise”
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While

<while b do S, s> =>

<if b then (S; while b do S) else skip, s>

• This is an equivalence which makes 1 (more) 
iteration explicit in terms of condition and loop body

(and leaves the next iteration to be evaluated when 
we get there)
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The semantic function S
SOS

[S]

• As before, we can look at this as a computable 
function between configurations/states, parametric in 
the statement

• For all statements S in the language,

SSOS[S] = s when S =>* s completes

SSOS[S] = undef otherwise
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S
NS

[S] = S
SOS

[S]

• These two specifications give the exact same 
interpretation of While programs

• Maybe you can see it, we won’t spend time on 
proving it

• One of the things that says, is that the N.S. notation 
can be elaborated into every tiny sub-step, it’s not 
missing any detail

• It’s much shorter to write, so that will do
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This is some kind of logic

• Natural deduction is a formalism like this which was 
invented before digital computers, in an inter-war era 
attempt to write formal rules for common-sense 
reasoning
– The sort of thing philosophers like to do

• Natural semantics emerges when you try to use such 
rules specifically to describe what a computer 
program does, it turns into states and steps
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Looks like an intricate way to 
write the obvious
• Fundamental things do, once they’re discovered
• If we pretend that high and low voltages represent 1 

and 0, arithmetic and processing circuits are the same 
thing
– We didn’t know before Claude Shannon noticed it

• If we represent state changes in axiomatic logic, 
running a program and constructing a proof is the 
same thing
– We didn’t know before Haskell Curry and William Howard noticed it
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But what’s the point?

• If you have a program and its proof, all it really means 
is that you wrote the same thing twice:
– Once in source code
– Once with pen and paper

• The point is to detach what a program is supposed to 
do from what the compiler’s translation actually does
– If you have only the compiler’s interpretation, that’s what defines the 

meaning of the program
– If you have another definition handy, you can find it out if the compiler 

makes mistakes
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Language specifications

• As you may have noticed, working out appropriate rules 
and proof trees takes a lot of effort even for a tiny toy 
language

• With a few notable exceptions, language standards 
tend to be explained by thick books in English instead, 
as unambiguously as the standard committee manages 
to write it

• Formal definitions tend to be reserved for limited 
situations where mistakes are incredibly expensive
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Sidebar:

Our language specification

• If you haven’t noticed yet, you will: the VSL language 
we implement in the exercises is neither completely 
nor formally specified

• I don’t think that’s actually a bad thing:
– Even if I wrote a 100 pages of illegible definitions, I would probably 

still miss some subtle point lurking in a corner

– When you find something under-specified, it makes you consider 
what you think the language should mean, and how to implement it
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...no, really - what’s the point?

• Oh, all right.
• If you take the states and their changes out of the 

notation, you’re left with the logical inferences you can 
make about program semantics based only on what the 
source text says

• That’s what a static type system does
• I like today’s notation better than the book’s way to write 

type checking rules, so I plan to use it for that.
(It is, in fact, equivalent, just wanted to introduce it)
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The Great PerspectiveTM

• If we disregard the notation thing, there are still two great ideas here:

1) There are ways to show that a systematic way to change a program can 
leave its meaning alone

(Semantics-preserving transformation is what an optimizer does)

2) You can think of a block of statements as a way to write down its 
semantic function

• Both of these ideas can bring order to the understanding of dataflow 
analysis, at the end of the semester

• You can understand dataflow analysis without them too, I just think they’re 
a lot easier to grasp when you meet them for the 2nd time, after leaving 
them alone a while
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