Lexical analysis: Regular Expressions and NFA

So, we have this DFA

- It can tell you whether or not you have an integer with an optional, fractional part
- Just point at the first state and the first letter, and follow the arcs

Common things in lexemes

- Sequences of specific parts
- These become chains of states in the graph
- Repetition
- This becomes a loop in the graph
- Alternatives
- These become different paths that separate and join

Some notation

- An alphabet is any finite set of symbols
- $\{0,1\}$ is the alphabet of binary strings
- [A-Za-z0-9] is the alphabet of alphanumeric strings (English letters)
- Formally speaking, a language is a set of valid strings over an alphabet
$-L=\{000,010,100,110\}$ is the language of even, positive binary numbers smaller than 8
- A finite automaton accepts a language
- i.e. it determines whether or not a string belongs to the language embedded in it by its construction

Things we can do with
 languages

- They can form unions:
- $s \in L_{1} \cup L_{2}$ when $s \in L_{1}$ or $s \in L_{2}$
- We can concatenate them:
$-L_{1} L_{2}=\left\{s_{1} s_{2} \mid s_{1} \in L_{1}\right.$ and $\left.s_{2} \in L_{2}\right\}$
- Concatenating a language with itself is a multiplication of sorts (Cartesian product)
$-L L L=\left\{s_{1} s_{2} s_{3} \mid s_{1} \in L\right.$ and $s_{2} \in L$ and $\left.s_{3} \in L\right\}=L^{3}$
- We can find closures
- $L^{*}=u_{i=0,1,2, \ldots} \mathrm{Li}^{\text {(Kleene closure) }} \leftarrow$ sequences of 0 or more strings from L
- $L^{+}=U_{i=1,2, \ldots} L^{i} \quad$ (Positive closure) \leftarrow sequences of 1 or more strings from L

Regular expressions
 ("regex", among friends)

- We denote the empty string as ε
(epsilon)
- The alphabet of symbols is denoted Σ
(sigma)
- Basis
$-\varepsilon$ is a regular expression, $L(\varepsilon)$ is the language with only ε in it
- If a is in Σ, then a is also a regular expression (symbols can simply be written into the expression), $L(a)$ is the language with only a in it
- Induction
- If r_{1} and r_{2} are regular expressions, then $r_{1} \mid r_{2}$ is a reg.ex. for $L\left(r_{1}\right) \cup L\left(r_{2}\right)$ (selection, i.e. "either r_{1} or r_{2} ")
- If r_{1} and r_{2} are regular expressions, then $r_{1} r_{2}$ is a reg.ex. for $L\left(r_{1}\right) L\left(r_{2}\right)$ (concatenation)
- If r is a regular expression, then r^{*} denotes $L(r)^{*}$ (Kleene closure)
- (r) is a regular expression denoting $L(r)$
(We can add parentheses)

NTNU - Trondheim Norwegian University of Science and Technology

DFA and regular expressions

 (superficially)- We already noted that this thing recognizes a language because of how it's constructed:

- There's a corresponding regular expression:

$$
[0-9][0-9]^{*}\left(.[0-9]^{*}\right) ?
$$

Optional, because state 2 accepts

Now there are 3 views

- Graphs, for sorting things out
- Tables, for writing programs that do what the graph does
- Regular expressions, for generating them automatically

Regular languages

- All our representations show the same thing
- We haven't shown how to construct either one from the other, but maybe you can see it still.
- The family of all the languages that can be recognized by reg.ex. / automata are called the regular languages
- They're a pretty powerful programming tool on their own, but they don't cover everything

(more on that later)

Combining automata

- Suppose we want a language which includes both of the words \{"all", "and"\}
- Separately, these make simple DFA:

Putting them together

- The easiest way we could combine them into an automaton which recognizes both, is to just glue their start and end states together:

This is slightly problematic

- The simulation algorithm from last time doesn't work that way:
- Starting from state 0 and reading 'a', the next state can be either 1 or 2
- If we went from 0 to 1 on an 'a' and next see an ' n ', we should have gone with state 2 instead
- If we see an 'a' in state 0 , the only safe bet against having to backtrack is to go to states 1 and 2 at the same time...

The obvious solution

- Join states 1 and 2 , thus postponing the choice of paths until it matters:
- Now the simple algorithm works again (yay!)
- ...but we had to analyze what our two words have in common (how general is that?)

Non-deterministic Finite Automata

- One way to write an NFA is to admit multiple transitions on the same character
- Another is to admit transitions on the empty string, which we already denoted as " ε " (epsilon)
- These are equivalent notations for the same idea:

Relation to regular expressions

- NFA are easy to make from regular expressions
- The pair of words we already looked at can be recognized as the regex (all | and)
- (equivalently, a (ll | nd) for the deterministic variant, but never mind for the moment)
- We can easily recognize the sub-automata from each part of the expression:

Machine \#1

Machine \#2

What can a regex contain?

- Let's revisit the definition:

1) a character stands for itself (or epsilon, but that's invisible)
2) concatenation
$\mathrm{R}_{1} \mathrm{R}_{2}$
3) selection
$R_{1} \mid R_{2}$
4) grouping
$\left(R_{1}\right)$
5) Kleene closure $\quad R_{1}{ }^{*}$

- We can show how to construct NFA for each of these, all we need to know is that R_{1}, R_{2} are regular expressions
- Notice that a DFA is also an NFA
- It just happens to contain zero ε-transitions
- More properly put, DFA are a subset of NFA

1) A character

- Single characters (and epsilons) in a regex become transitions between two states in an NFA
- Working from (all | and), that gives us

Now we have a bunch of tiny Rs to combine

2) Concatenation

- Where $R_{1} R_{2}$ are concatenated, join the accepting state of R_{1} with the start state of R_{2} :

$$
R_{1}-R_{2}
$$

- In our example:

3) Selection

- Introduce new start+accept states, attach them using ε-transitions (so as not to change the language):

- It's exactly what we did before:

4) Grouping

- Parentheses just delimit which parts of an expression to treat as a (sub-)automaton, they appear in the form of its structure, but not as nodes or edges
- cf. how the automaton for (all|and) will be exactly the same as that for ((a)(l)(l))|((a)(n)(d))

5) Kleene closure

- $R_{1}{ }^{*}$ means zero or more concatenations of R_{1}
- Introduce new start/accept states, and ε-transitions to
- Accept one trip through R_{1}
- Loop back to its beginning, to accept any number of trips
- Bypass it entirely, to accept zero trips

ε

Q.E.D.

- We have now proven that an NFA can be constructed from any regular expression
- None of these maneuvers depend on what the expressions contain
- It's the McNaughton-Thompson-Yamada algorithm
(Bear with me if I accidentally call it "Thompson's construction", it's the same thing, but previous editions of the Dragon used to short-change McNaughton and Yamada)
- But wait... what about the positive closure, $\mathrm{R}_{1}+$?
- It can be made from concatenation and Kleene closure, try it yourself
- It's handy to have as notation, but not necessary to prove what we wanted here

One lucid moment

- We've talked about closures
- They are the outcome of repeating a rule until the result stops changing (possibly never)
- We've taken a notation and attached general rules to all its elements, one at a time
- By induction, this guarantees that we cover all their combinations
- That is the trick of a "syntax directed definition"
- Hang on to these ideas
- They will appear often in what lies ahead of us

