NFA to DFA conversion and state minimization

Where we were

- We have invented a way to turn the regex (all|and) into this:
(McNaughton, Thompson and Yamada)

So, that doesn't really help right away (dang!)

- We can translate any regex to NFA, but what use is that when our DFA simulation algorithm doesn't work for NFA?
- We'll also have to translate NFA into equivalent DFA
(i.e. there's another thing or two to prove before we're happy)
- Luckily, that's not so hard, it has a lot in common with what we first did when discussing NFA:
- Find out how far we can take parallel paths before they differ
- Take those parallel paths and merge them as single states:

States and sets of states

- We'll need to group states together, in order to treat them as one
- Very formally speaking, there is a difference between the state s itself and the set $\{s\}$ which has it as the only member
- I'm going to wave my hands and ignore that difference, because it doesn't add any valuable intuition
- The exposition in the book cares about the difference, though
- For brevity, let us talk about \mathbf{S} as if it is a collection of one or more states, and assume that what we say applies to all the states that are included in it.

ε-closure

- Given S in an NFA, its ε-closure is the set of states that can be reached through ε-transitions only
- Once again, this

is equivalent to this

move(S,c)

- move(S,c) is the set of states that you can reach from S when the input character is c
- In DFA-land, this is just the transition table (or function)
- In the deterministic parts of the automaton below, move $(3, n)=\{4\}$, $\operatorname{move}(2, \mathrm{I})=\{5\}$ and so on
- For NFAs, it's a little more interesting
$-\operatorname{move}(0, a)=\{1,3\}$

$$
\begin{aligned}
& a-1^{l}-2 \mid \\
& a-3-4 d
\end{aligned}
$$

Identifying ε-closures

- Numbering the states,

$$
\begin{aligned}
& \text { - } \varepsilon \text {-closure }(0)=\{0,1,5\} \\
& \text { - } \varepsilon \text {-closure }(4)=\{4,9\} \\
& -\varepsilon \text {-closure }(8)=\{8,9\}
\end{aligned}
$$

- The states in these sets can not be told apart as far as the automaton is concerned

We'll need a group of destinations (let's call it Dtran, for DFA transitions)

- We'll need to collect the transitions that exit the set we want to merge
$-\operatorname{move}(\{0,1,5\}, a)=\{2,6\}$
- $\operatorname{Dtran}[\{0,1,5\}, a]=\varepsilon$-closure $(\{2,6\})=\{2,6\}$

More transitions with multiple destinations

- Dtran is relevant at the other end, too:
$-\operatorname{Dtran}[3, I]=\varepsilon$-closure $(\operatorname{move}(3, \mathrm{I}))=\varepsilon$-closure $(4)=\{4,9\}$
- $\operatorname{Dtran}[7, \mathrm{~d}]=\varepsilon$-closure $(\operatorname{move}(7, \mathrm{~d}))=\varepsilon$-closure $(8)=\{8,9\}$

$$
\begin{aligned}
& { }^{\varepsilon}-1^{a}-2^{l}-3^{l}-4 \varepsilon^{\varepsilon}-9 \\
& 5^{a}-6^{n}-7^{d}-8 \underset{\varepsilon}{ }
\end{aligned}
$$

DFA states from indistinguishable sets

- We can now merge the states we have grouped together into new ones that will become our DFA:

Reintroduce transitions

- Insert the transitions according to Dtran:

Find the start and end(s)

- If one original state was accepting, any ε-closure that contains it must be accepting, since accept can be reached there without reading any more input

This is a DFA

$$
1-2^{1}-3
$$

$$
0 \xrightarrow[n]{a}-1-5
$$

- It's not quite as economical as our hand-conversion from the beginning
- There are more states than we need
- It can, however, be constructed automatically
- This method is called subset construction

DFA state minimization

- Taking the path regex \rightarrow NFA \rightarrow DFA does not always introduce useless states
- We have seen that it can, though, there's no use for both states 3 and 5 on the previous slide
- They just came out because we were strictly following a set of rules

A matter of space and time

- Minimizing away $\{3,5\}$ works, but it doesn't illustrate the general procedure very well
- Developing a large DFA with plentiful redundant states doesn't fit nicely into a slide/lecture
- Here's what we can do
- Take a simple regex which directly gives a minimal DFA
- Create an equivalent, fluffier DFA by hand and intuition
- Minimize it, and see that the same result comes out
(Just mentioning it - if you think that the next example feels a bit contrived, that's because you're perfectly right, it's artificial in order to be small.)

REDO FROM START

- We can quickly take the regex b*ab*a through the motions we've already covered:
b* and a become these,

concatenate them into this,

ε
merge ε-closures, transitions between subsets,

and concatenate 2 copies:

Carelessly, by hand

$b * a b * a$ must start with either b or a :

Next, there might be any number of b-s, before the mandatory a:
b

Concatenate 2 of those:

Surely worth minimizing...

Systematic minimization

We'll be grouping states together, so start with an initial grouping of non-final and final states

- A pair of states in group G_{x} are equivalent if and only if their transitions on any given symbol takes them to a state in the same group G_{y}
- Mind that it's perfectly fine if $G_{x}=G_{y}$, the shared destination for a symbol can be the group our pair of states is already in, or a different one

Check a pair for equivalence

This pair is not equivalent:

- Both have transitions on b that go from G_{x} to G_{x} itself, that's fine
- The leftmost state transitions from G_{x} to G_{x} itself on a
- The rightmost transitions from G_{x} to G_{y} on a, so we'll need to distinguish between them

Check another pair for equivalence

This pair is equivalent:

- Both states have transitions on b that go from G_{x} to G_{x} itself
- Both states have transitions on a that also go from G_{x} to G_{x} itself

Check every pair for equivalence

 (at least until you've found one)This pair is equivalent as well:

- Both states have transitions on b that go from G_{x} to G_{x} itself
- Both states have transitions on a that go from G_{x} to G_{y}
- There are three more pairs in G_{x}, but we can see where this is going without drawing them all...

Divide and conquer

- These are the new groups of equivalent pairs:

- Split those into new groups, lather, rinse and repeat

In the end

- The pair in G_{w} is equivalent: a-s take us to G_{z}, b-s remain in G_{w}
- The pair in G_{z} is equivalent: a-s take us to G_{y}, b-s remain in G_{z}
- It makes no difference to the rest of the automaton which distinct state within a group we're going to or leaving
- Thus, we might as well make them single states:

Back where we were

- If you try the same thing with this one, you'll find that the initial grouping into final and non-final states already captures the equivalence of the $\{4,9\}$ and $\{8,9\}$ states

- That creates what we want, but trivial examples are less meaningful

Optimized language acceptors

- We have now seen that this can be done:

The roads not taken

- This is not necessarily exactly what happens in a given scanner generator
- DFA can be made directly from reg.ex.
- NFA can be simulated on the fly
- Lookup tables of transitions can be stored more compactly
- My goal is to convince you that there is at least one principled approach to the problem
- Formal languages and automata theory can be an entire subject
- Scanning and parsing methods can be one, too
- We're just borrowing a necessary minimum to Get Things Done™
- l'll round up the loose ends from Chapter 3 next time

