NTNU - Trondheim Norwegian University of Science and Technology

Top-down parsing and $L L(1)$ parser construction

Parsing by recursive descent

- Take this grammar which models "if"s and "while"s:

$$
\begin{aligned}
& \mathrm{P} \rightarrow \mathrm{iCtSz}|\mathrm{iCtSeSz}| \mathrm{wCdSz} \\
& \mathrm{C} \rightarrow \mathrm{c} \\
& \mathrm{~S} \rightarrow \mathrm{~s}
\end{aligned}
$$

- Let's parse the statement 'ictsesz'
- In top-down parsing, our starting point is the start symbol, we need to choose a production

P

- LL(1) parsing means
- Left-to-right scan
- Leftmost derivation (i.e. always expand leftmost nonterminal)
- 1 symbol of lookahead (this must be enough to select a production)

We can't choose

- If we look ahead 1 token and find 'i', there are two productions to choose from

$$
\begin{aligned}
& \mathrm{P} \rightarrow \mathrm{iCtSz} \\
& \mathrm{P} \rightarrow \mathrm{iCtSeSz}
\end{aligned}
$$

- There is no way to make this choice before seeing more of the token stream
- Left factoring (prev. lecture) to the rescue!
- Grammar becomes

$$
\begin{aligned}
& \mathrm{P} \rightarrow \mathrm{iCtSP} \cdot \mid \mathrm{wCdSz} \\
& \mathrm{P}^{\prime} \rightarrow \mathrm{z} \mid \mathrm{eSz} \\
& \mathrm{C} \rightarrow \mathrm{c} \\
& \mathrm{~S} \rightarrow \mathrm{~s}
\end{aligned}
$$

One step ahead

- Now that there's only one production which expands P on ' i ', we can take it when we see ' i '

P \rightarrow iCtSP'

- ...and expand the parse tree according to the derivation

Moving along

- Recursive descent means we follow the children of a tree node through to the bottom, where there must be a terminal.
- The step we chose predicted that iCtSP' is coming up, we're looking at the ' i ' in 'ictsesz'
- Following through to the first child...

...it's an 'i'! That matches, throw it away, we now have 'ctsesz' left to parse.

Backtrack, and repeat

- Leaving that behind, the next child in the tree is a nonterminal
- That can't match any input, so we need to pick a production again

Pick the next production

- There's not a lot of choice on how to expand C, so it could be clear already
- Nevertheless, look at the input 'ctsesz', lookahead is now 'c'
- Pick production $\mathrm{C} \rightarrow \mathrm{c}$, and expand the tree accordingly

Verify another terminal

- We need to go all the way to the bottom before backtracking...
- ...but we find the 'c' that was expected there
- Away it goes, remaining input is 'tsesz'

't' disappears as well

- It was already predicted by the first production:
- Toss it out, 'sesz' remains

The next nonterminal is S

- Lookahead character 's' drives the choice of $S \rightarrow s$

- Verify 's', leave 'esz' and proceed to P'

There is a choice here

- P' expands in two ways

$$
\mathrm{P}^{\prime} \rightarrow \mathrm{z}
$$

$$
\mathrm{P}^{\prime} \rightarrow \mathrm{eSz}
$$

- This is our postponed selection, we can choose now because the lookahead symbol ('e' from remaining 'esz') tells us we need alternative \#2:

Continue in the same way

- You'll have to
- Verify 'e’, and backtrack (leaving 'sz' on input)

Continue in the same way

- You'll have to
- Verify 'e', and backtrack (and leave 'sz' on input)
- Expand another $S \rightarrow s$, verify the terminal (leaving 'z' on input)

The statement is valid

- You'll have to
- Verify 'e’, and backtrack (and leave 'sz' on input)
- Expand another $S \rightarrow s$, verify the terminal (leaving 'z' on input)
- Verify the final ' z ', and backtrack to find no further children
- The parse tree is finished, and since that was all the input, it's ok.

That is how it works

- Predictive parsing by recursive descent
- Starts from the start symbol (top)
- Verifies terminals
- Picks a unique production for nonterminals based on the lookahead
- Expands the syntax tree by productions, and recursively treat the new subtree in the same way
- This requires that the grammar is suitable, but we can adapt them somewhat
- Left factor where a common lookahead prevents picking the right production
- Eliminate left-recursive productions
- We only saw left factoring in action so far, but let's do one another grammar

We're aiming for a table

- As with DFA, an algorithm needs a table where it can make decisions based on indexing (nonterminal, terminal) pairs and find a single production
- To make that table, it's a good idea to determine
- What can the strings derived from a nonterminal begin with?
- Which nonterminals can vanish, so that the lookahead symbol is actually part of the next production to choose?
- What can come directly after a nonterminal that can vanish?
(where 'vanish' means that there's a production $X \rightarrow \varepsilon$, so that nonterminal X disappears from the intermediate form in the derivation without consuming any characters from the input token stream)

Here's another grammar

$S \rightarrow u B D z$
$B \rightarrow B \vee \mid w$
$\mathrm{D} \rightarrow \mathrm{EF}$
$\mathrm{E} \rightarrow \mathrm{y} \mid \varepsilon$
$\mathrm{F} \rightarrow \mathrm{x} \mid \varepsilon$

- It doesn't model anything in particular, it's here to be short and sweet

FIRST

- The set $\operatorname{FIRST}(\alpha)$ is the set of terminals that can appear to the left in α α is really any ol' combination of terminals and nonterminals
- If we tabulate FIRST for all the heads in the grammar,

```
FIRST(S) = {u} (u begins the only production)
FIRST(B)={w} (however many times B}->Bv\mathrm{ is taken, w appears on the left in the
end)
FIRST(E) = {y} (only production that derives any terminal)
FIRST(F) = {x} (ditto)
and finally,
FIRST(D) = {y,x}
    y because D }->\textrm{EF}->\textrm{yF
    x because D }->\textrm{EF}->\textrm{F}->\textrm{x}\quad(\textrm{E}\mathrm{ can disappear by E }->\varepsilon\mathrm{ )
```


Nullablility

- A nonterminal is nullable if it can produce the empty string (in any number of steps)
- The Dragon book denotes this by putting ε in the FIRST set
- I denote it by keeping a separate record, because I like to
- You can choose for yourself, we can read both notations
- In short order,

```
    nullable (S) = no (there are terminals in the only production)
    nullable (B) = no (there are terminals in both productions)
    nullable (E) = yes (it produces E->\varepsilon)
    nullable (F) = yes (it produces F->\varepsilon)
    nullable (D) = yes (D }->\textrm{EF}->\textrm{F}->\varepsilon
```


FOLLOW

- FOLLOW (N) for nonterm. N is the set of terminals that can appear directly to its right
- In order to find these, you have to examine all the places N appears in production bodies, and find the terminals directly to its right
- If it has a nonterminal on its right, you have to follow all its productions too, and find out what can come up instead of it
- That will be its FIRST set
- If it has a nonterminal that can vanish to its right, you have to look at what comes afterwards...
- ...and in general, collect all the terminals that can appear to the right in one way or another
- This is a little trickier than FIRST, but it can be done if you concentrate
- If you don't like to concentrate, you can also slavishly follow the rules beginning at the bottom of $p .221$

For our grammar

$$
\begin{aligned}
& -\operatorname{FOLLOW}(S)=\{\$\} \quad \text { (the end of input) } \\
& \text { - FOLLOW }(B)=\{v, x, y, z\} \quad \text { taken from the derivations } \\
& S \rightarrow u B D z \rightarrow u B v D z \\
& \mathrm{~S} \rightarrow \mathrm{uBDz} \rightarrow \mathrm{uBEFz} \rightarrow \mathrm{uBFz} \rightarrow \mathrm{uBxz} \\
& S \rightarrow u B D z \rightarrow u B E F z \rightarrow u B y F z \\
& \mathrm{~S} \rightarrow \mathrm{uBDz} \rightarrow \mathrm{uBEFz} \rightarrow \mathrm{uBFz} \rightarrow \mathrm{uBz} \\
& -\operatorname{FOLLOW}(D)=\{z\} \quad \text { (from } S \rightarrow u B D z) \\
& \text { - FOLLOW(E) }=\{x, z\} \text { taken from the derivations } \\
& S \rightarrow u B D z \rightarrow u B E F z \rightarrow u B E x z \\
& \mathrm{~S} \rightarrow \mathrm{uBDz} \rightarrow \mathrm{uBEFz} \rightarrow \mathrm{uBEz} \\
& -\operatorname{FOLLOW}(F)=\{z\} \quad(\text { from } S \rightarrow u B D z \rightarrow u B E F z)
\end{aligned}
$$

Two rules

- Armed with the FIRST, FOLLOW and nullable information, consider every production $X \rightarrow \alpha$ in the grammar, and apply two rules:
- Enter the production $X \rightarrow \alpha$ at (X, t) where t is in $\operatorname{FIRST}(\alpha)$
- When $\alpha \rightarrow{ }^{*} \varepsilon$, enter the production $X \rightarrow \alpha$ at (X, t) where t is in FOLLOW(X)

Trying out rule \#1

- With the grammar that we have, the first rule gives the table

	u	w	v	X	y	z
S	$S \rightarrow u B D z$					
B		$\begin{aligned} & \mathrm{B} \rightarrow \mathrm{w} \\ & \mathrm{~B} \rightarrow \mathrm{Bv} \end{aligned}$				
D				$D \rightarrow E F$	$D \rightarrow E F$	
E					$E \rightarrow y$	
F				$F \rightarrow x$		

Houston, we have a... left recursion

- This will not do, expanding B on lookahead ' w ' requires a choice we can't make

	u	W	v	X	y	z
S	$\mathrm{S} \rightarrow \mathrm{uBDz}$					
B		$\begin{aligned} & \mathrm{B} \rightarrow \mathrm{w} \\ & \mathrm{~B} \rightarrow \mathrm{Bv} \end{aligned}$				
D				$D \rightarrow E F$	$D \rightarrow E F$	
E					$E \rightarrow y$	
F				$F \rightarrow x$		

Fix the grammar

- Eliminating left recursion gives us

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{uBDz} \\
& \mathrm{~B} \rightarrow \mathrm{w} \mathrm{~B}^{\prime} \\
& \mathrm{B}^{\prime} \rightarrow \mathrm{v} \mathrm{~B}^{\prime} \mid \varepsilon \\
& \mathrm{D} \rightarrow \mathrm{EF} \\
& \mathrm{E} \rightarrow \mathrm{y} \mid \varepsilon \\
& \mathrm{F} \rightarrow \mathrm{x} \mid \varepsilon
\end{aligned}
$$

- Update the FIRST, FOLLOW, nullable sets after the change:
$\operatorname{FIRST}(B)=\{w\}, \operatorname{FOLLOW}(B)=\{x, y, z\}$, nullable $(B)=n o$
$\operatorname{FIRST}\left(B^{\prime}\right)=\{v\}, \operatorname{FOLLOW}\left(B^{\prime}\right)=\{x, y, z\}$, nullable $\left(B^{\prime}\right)=$ yes

Try rule \#1 again

- This looks better:

	u	w	v	x	y	z
S	$S \rightarrow u B D z$					
B		$B \rightarrow \mathrm{w}^{\prime}$				
B'			$B^{\prime} \rightarrow v B^{\prime}$			
D				$D \rightarrow E F$	$D \rightarrow E F$	
E					$E \rightarrow y$	
F				$F \rightarrow x$		

Adding rule \#2

- Where nonterms are nullable, insert at FOLLOW

	u	w	v	x	y	z
S	$S \rightarrow u B D z$					
B		$B \rightarrow \mathrm{w}^{\prime}$				
B'			$B^{\prime} \rightarrow v B^{\prime}$	$\mathrm{B}^{\prime} \rightarrow \varepsilon$	$\mathrm{B}^{\prime} \rightarrow \varepsilon$	$B^{\prime} \rightarrow \varepsilon$
D				$D \rightarrow E F$	$D \rightarrow E F$	$D \rightarrow E F$
E				$E \rightarrow \varepsilon$	$E \rightarrow y$	$E \rightarrow \varepsilon$
F				$F \rightarrow x$		$F \rightarrow \varepsilon$

Now we have an LL(1) parsing table

- There is only one rule to choose from any pair of (nonterminal, terminal), so the tree can be built deterministically by following the method from the first example
- Pick productions for nonterminals by looking them up in the table
- Parse a sample statement like uwvvxz if you like
- Try to think of how you would structure a program that works the same way

Why we cover this

- Bottom-up parsers are a handful to construct, it's a job best left for an automatic generator
- Top-down parsers work on a simple principle, those are doable by hand
- At least as long as we stick to $\operatorname{LL}(1)$, longer lookaheads like $\operatorname{LL}(2)$ make for tables that have a column for every pair of terminals
- We'll use a bottom-up generator in the practical work
- You should also know how to make a top-down one in the theoretical work
- So as to make an informed choice if you need to parse things

