NTNU - Trondheim

 Norwegian University of Science and Technology
Bottom-up parsing

Where we are (again)

- Introducing C.F.Grammars, we said that they include regular languages, and then some more

Type 0

Type 1

Context-Free

Regular

Memories of past states

- These classes of languages are recognizable by (abstract) machines of differing power
- We know the finite automata
- Stack machines (or pushdown automata) are like F. A., but with added push and pop operations that let them trace the path they took to a state (and revert to where they've been)

What does a top-down parser look like?

- We looked at how to make an $\operatorname{LL}(1)$ parsing table, but not at how to turn it into a program
- Here's a grammar that's so simple that we can just knock the parsing table out by looking at it:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{xB} \mid \mathrm{yC} \\
& \mathrm{~B} \rightarrow \mathrm{xB} \mid \varepsilon \\
& \mathrm{C} \rightarrow \mathrm{yC} \mid \varepsilon
\end{aligned}
$$

	x	y	$\$$
A	$A \rightarrow x B$	$A \rightarrow y C$	
B	$B \rightarrow x B$		$B \rightarrow \varepsilon$
C		$C \rightarrow y C$	$C \rightarrow \varepsilon$

	x	y	$\$$
A	$A \rightarrow x B$	$A \rightarrow y C$	
B	$B \rightarrow x B$		$B \rightarrow \varepsilon$
C		$C \rightarrow y C$	$C \rightarrow \varepsilon$

- One way to implement this is to write a function for each nonterminal, and make them mutually recursive according to the table

```
parse_A ():
    switch(symbol):
        case x:
            add_tree( x, B )
            match (x)
            parse_B ()
        case y:
            add_tree( y, C )
            match (y )
            parse_C ()
        case $:
            error()
```

```
parse_B():
    switch(symbol):
        case x:
            add_tree(x,B)
            match(x)
            parse_B ( )
        case y:
                error()
        case $:
        return
    return
```

```
parse_C():
    switch(symbol):
        case x:
                error()
        case y:
                add_tree(y,C)
                match(y)
                parse_C ( )
        case $:
            return
    return
```


Function calls stack up

- Parsing 'y y y', we get
- The derivation $\mathrm{A} \rightarrow \mathrm{yC} \rightarrow \mathrm{y}$ y $\mathrm{C} \rightarrow$ y y y $\mathrm{C} \rightarrow \mathrm{y}$ y y and the function call stack

Recur:					Call	Call		Return	Call	match(y)	Return!
							match(y)		parse_C	parse_C	parse_C
		Call		Call	match(y)	Return	parse_C	parse_C	parse_C	parse_C	parse_C
	Call	match(y)	Return	parse_C							
	parse_A										
	wind:				Tim						

```
    Return!
parse_C Return!
parse_C parse_C Return!
parse_C
parse_C
parse_C
Return!
parse_A parse_A parse_A parse_A Finished
```

NTNU - Trondheim Norwegian University of Science and Technology

Recursive descent vs. stack

- Recursive descent parsing uses the function call mechanism to implement its stack machine
- It's hidden in the programming language, but it is there
- $L L(1)$ can also be done with iterations
- Provided that you're prepared to implement your own stack
- Generally, the need for a stack comes out of the need to match up beginnings and ends
- Any construct of the sort <start> <thing> <end> where the <thing> can contain further <start> and <end>s, as in

Expression \rightarrow (expression)
Statement \rightarrow \{ statement \}
Comment \rightarrow (* Comment *)
(/* ML does this, C comments can't be nested */)

Another way to parse

- The "LL" in $\operatorname{LL}(1)$ is
- Left-to-right scan
- Leftmost Derivation (always expand the leftmost nonterminal)
- How can we go at it from the right?
- i.e. get LR parsing, to obtain a Rightmost derivation?
- It will require looking deeper into the token stream before deciding on productions...

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

General operation

- Take the same, silly grammar again
- Instead of making a decision as soon as a terminal comes along, stack them up

We might be making an A or a C here, hold on...

Keep stacking

- As the state of the internal stack grows, it identifies more and more of a single production rule

We're definitely working towards some C-s here, how many?
$A \rightarrow x B \mid y C$ $B \rightarrow x B \mid \varepsilon$ $\mathrm{C} \rightarrow \mathrm{yC} \mid \varepsilon$

LR parser

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

Keep stacking

- As the state of the internal stack grows, it identifies more and more of a single production rule

> We're definitely working towards some C-s here, how many?
...and again...

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

Enough is enough

- For this grammar, the sequence ends when the input does

LR parser

> What's next?

Ok, time to look at what we got!

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

Bring out your states

- The stack extension is for memory, the production rules can be represented by a finite automaton
- It has been watching while we were stacking symbols, so it knows that we've taken a direction where there are no x-s or B-s

LR parser

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

Reduce body to head

- We're at the end of the stream, so we're putting in the last (rightmost) C nonterminal
- This works out the derivation in reverse order

LR parser

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

Next move

LR parser

C
 y

This is the body of $\mathrm{C} \rightarrow \mathrm{yC}$,
Substitute C and push

NTNU - Trondheim Norwegian University of Science and Technology

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

...and it repeats...

LR parser

C y
 y
 Hey, we got another one just like it

NTNU - Trondheim Norwegian University of Science and Technology

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

...until...

- The automaton built the stack
- The stack says how deeply into the grammar we've gone
- When the final body appears, we reduce the start symbol

LR parser

$$
\begin{aligned}
& A \rightarrow x B \mid y C \\
& B \rightarrow x B \mid \varepsilon \\
& C \rightarrow y C \mid \varepsilon
\end{aligned}
$$

We're finished!

- Only the start symbol is left on stack, this says that the statement was syntactically correct

LR parser

A
 Wow!

If you look for the derivation

- Bending notation, space, and time a bit, we can illustrate it like this

Stack	Input	Action
-	y, y, y	Shift
y	y, y	Shift
y, y	y	Shift
y, y, y	-	Reduce $\mathrm{C} \rightarrow \varepsilon \quad$ (push C$)$
y, y, y, C	-	Reduce $C \rightarrow$ yC (pop y, $\mathrm{C}+$ push C$)$
y, y, C	-	Reduce $C \rightarrow y C \quad(p o p y, C+$ push $C)$
y, C	-	Reduce $A \rightarrow y C$ (pop y, $C+$ push A)
A	-	Well done, cookies for everyone
\}		

Here is our rightmost derivation, in reverse

Things the example didn't show

- Recognizing the body of a production doesn't have to wait until the very end
- Only until it is uniquely determined
- Top-down parsing matches input to productions from above in the syntax tree

Already
saw this

Things the example didn't show

- Bottom-up parsing buffers input until it can build productions on top of productions

First thing reduced
Second thing reduced

Stop and reduce combinations
when we can

Next, build more sub-trees from the bottom

NTNU - Trondheim
Norwegian University of Science and Technology

That's the principle of it

- Key ingredients:
- A stack to shift and reduce symbols on
- An automaton that can use stacked history to backtrack its footsteps
- A grammar with one and only one initial production
- The last point is easy, if you have a grammar like $\mathrm{S} \rightarrow \mathrm{iCtSz} \mid \mathrm{iCtSeSz}$
- It can (somewhat obviously) be augmented like so S' \rightarrow S $\mathrm{S} \rightarrow \mathrm{iCtSz} \mid \mathrm{iCtSeSz}$ without changing the language.
- We'll see the purpose of that shortly

Various schemes

- The $\operatorname{LR}(\mathrm{k})$ family of languages can all be parsed with some kind of shift-reduce parser like this
- The more elaborate your automaton, the more grammars it can handle
- We're going to study a few variations of this theme: SLR, LALR, LR(1)
- They're easier to understand if we start with one which is actually blooming useless somewhat restrictive, but demonstrates a lot of general principles
- That is $\operatorname{LR}(0)$ automaton construction, up next.

