NTNU - Trondheim Norwegian University of Science and Technology

LR(0) parser construction

Bottom-up parsing

- Recapping the last lecture, what we need for a bottom-up parsing scheme is
- An internal stack to shift and reduce symbols on
- An automaton that tell us what to do when, and use stacked history to backtrack its footsteps
- A grammar with one and only one initial production

The LR(0) automaton

- The overall construction is similar to the NFA \rightarrow DFA idea, in that
- We're tracking all the different things that can happen throughout a derivation (there will be closures of related things)
- We're introducing states whenever it is necessary to cover something new
- The states represent all the different paths that may have led to them
- Some states are reducing, that means
- Pop body, push head (but we won't draw the stack in, just remember that this happens)
- Revert to where we started recognizing the present production
...and the production which led to that one, if it is now finished...
\ldots and the production which led to that other one...
... until the start symbol is all that's left
- Transitions shift symbols
- They are what moves us ahead while working toward a reduction

LR(0) items

- Since we have to track how far we have come along in a production's body, the notation for productions extends to a bunch of $L R(0)$ items
- All this means is that we add a marker ('.') to denote it
- It's not punctuation in the language, just a position-tracking dot
- The production
$\mathrm{S} \rightarrow \mathrm{aBc}$
gives us the four items

$$
\begin{array}{ll}
S \rightarrow . a B C & \text { (l'm just starting on an } S \text {) } \\
S \rightarrow \text { a. B c } & \text { (l'm working on } S \text {, already saw an a) } \\
S \rightarrow \text { a B.c } & \text { (l'm working on } S \text {, have found a and } B \text {) } \\
S \rightarrow \text { a B C. } & \text { (We have seen a whole } S \text { at this point, toss its history and put } S \text {) }
\end{array}
$$

- We won't need every item all the time, but they are the things we will combine into states, so this is what they mean

(Augmenting the grammar with) A Place to Begin

- The point of rewriting the grammar
$S \rightarrow \mathrm{iCtSz} \mid \mathrm{iCtSeSz}$
into
$S^{\prime} \rightarrow$ S
$S \rightarrow \mathrm{iCtSz} \mid \mathrm{iCtSeSz}$
is that when we're looking at items,
S' \rightarrow. S
uniquely says that we're just starting out, and
S' \rightarrow S .
uniquely says that we're finished.
- It's just a convenience, to avoid the corner cases of
"Begin the construction with every item from the start symbol", and
"Accept if any of the start symbol's productions reduce"
- This way, the rule can just be "start at the beginning, stop at the end", so to speak

Closures of items

- Closures of items are the sets of all items that can be obtained from the grammar without moving the position marker
- Consider this grammar

$$
\begin{aligned}
& D \rightarrow E F \\
& E \rightarrow y \mid F \\
& F \rightarrow x
\end{aligned}
$$

and start from the item $D \rightarrow$. EF

What can happen here?

$\mathrm{D} \rightarrow \mathrm{EF}$ $\mathrm{E} \rightarrow \mathrm{y} \mid \mathrm{F}$
$F \rightarrow x$

- Without moving the marker, applying productions can give us
$D \rightarrow$ EF
$E \rightarrow$. y
$E \rightarrow$. F
(those were the E -productions, we've made an F in the process)
$\mathrm{F} \rightarrow$. x
(this comes from repeating the procedure with the new items we found)
- What this closure represents, is that derivations from D can begin as
$D \rightarrow$ EF
$D \rightarrow . E F \rightarrow . y F$
$\mathrm{D} \rightarrow$. $\mathrm{EF} \rightarrow$. $\mathrm{FF} \rightarrow . \mathrm{xF}$
without moving the marker past any symbols.
- The notation implies all this (transitively)

Closures are states

- The closure gives us an automaton state, labeled with what it represents

$$
\begin{aligned}
& \mathrm{D} \rightarrow . \mathrm{EF} \\
& \mathrm{E} \rightarrow . \mathrm{y} \\
& \mathrm{E} \rightarrow . \mathrm{F} \\
& \mathrm{~F} \rightarrow . \mathrm{x}
\end{aligned}
$$

- The transitions out of this state represent all the different ways we can advance the input marker:

Advancing input (Shift actions)

- Selecting one of these transitions gives us a new item to find the closure of, and hence, the destination state

$$
\begin{aligned}
& \mathrm{D} \rightarrow . \mathrm{EF} \\
& \mathrm{E} \rightarrow . \mathrm{y} \\
& \mathrm{E} \rightarrow . \mathrm{F} \\
& \mathrm{~F} \rightarrow . \mathrm{x}
\end{aligned} \quad \mathrm{E} \quad \mathrm{D} \rightarrow \mathrm{E} . \mathrm{F}
$$

$$
\begin{aligned}
& D \rightarrow E F \\
& E \rightarrow Y \mid F \\
& F \rightarrow x
\end{aligned}
$$

Matching productions (Reduce actions)

- When we reach an item that has the marker at the end, we've gone through states that encode a sequence that can appear in a derivation

- $\mathrm{D} \rightarrow \mathrm{EF}\left(\right.$ (is) $E . F \rightarrow \mathrm{E} . \mathrm{x}_{\text {(is) }} \mathrm{Ex}$.
- As far as the grammar is concerned, $D \rightarrow E F \rightarrow E x$
- We just decorated it with a position in our stack-based reasoning

This is where we backtrack

- Reducing at state $F \rightarrow x$. means
- We have a stack with an x on top of it
- Remove it, and replace it with an F
- That returns us to the stage where we were about to shift one
$D \rightarrow . E F$
$E \rightarrow . y$
$E \rightarrow . F$
$F \rightarrow . x$

- Next thing on stack is the F we just created a moment ago
$D \rightarrow E F$ $\mathrm{E} \rightarrow \mathrm{y} \mid \mathrm{F}$ $\mathrm{F} \rightarrow \mathrm{x}$
...and again
- Below the F is the E that brought us here...

$$
F \rightarrow x
$$

- $D \rightarrow E F$. is another reducing state, take the E, F off stack, put in a D instead, and return to before the E was shifted...

$\mathrm{D} \rightarrow \mathrm{EF}$ $\mathrm{E} \rightarrow \mathrm{y} \mid \mathrm{F}$ $\mathrm{F} \rightarrow \mathrm{x}$

 That was one traversal- We've been through $D \rightarrow E F \rightarrow E x$

- We started by shifting an E
- That one must have been produced by a similar traversal elsewhere in the automaton, which shifted y, reduced $E \rightarrow y$, and thus gave us an E to shift

Making the LR(0) automaton

Start with the designated start item

- The one that looks like $X^{\prime} \rightarrow$. X

1) Find its closure, make a state
2) Follow all the transitions
3) Repeat from 1
until you reach the reduction $X^{\prime} \rightarrow X$ at the other end.
(...and don't duplicate states when you get an item you've already made a state from)

(Going by hand)

- If you don't respect some strict depth-first traversal ordering, the final reduction can be the first thing you find
- It gets hard to remember where you were after a few branches and backtracks
- In this case, it is necessary to stare at the automaton for a bit, to convince yourself that you've visited it everywhere
- That's not so mathematically rigorous, but it's OK for what we're after
- We're doing this to understand how it works
- Homespun $\operatorname{LR}(0)$ parsing is a waste of time, there are splendid generator programs

A simple grammar to try it on

This one models nested*, comma-separated lists:

```
S (L)|x
L S S|L,S
i.e. statements like
(x,x,(x,x))
    S ->(L) ->(L,S) ->(L,S,S) ->(S,S,S) ->** (x,x,S) -> (x,x,(L)) ->(x,x,(L,S))
    ** (x,x,(x,x))
or
(x,(x,x),x,(x,x))
and similar
*(Confer w. regex versus nested parentheses - Context-Free Grammars are more powerful...)
```


Blackboard time

- There's a summary of the whole development on the next few slides, but I think it's worth going through at a more leisurely pace, so l'll draw it step by step.
- Follow as it fits yourself, you can review the slides.

From the beginning

- Augmenting the grammar with a production that has a single rule, we get somewhere to start:
$S^{\prime} \rightarrow$ S
- Taking that as the basis for a first state, its closure is

S' \rightarrow.S
$S \rightarrow$.(L)
$S \rightarrow . x$
so we make an automaton state out of that

$$
\begin{aligned}
& S^{\prime} \rightarrow . S \\
& S \rightarrow .(\mathrm{L}) \\
& S \rightarrow . \mathrm{x}
\end{aligned}
$$

From the end

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

- The last thing that will happen is that we have parsed an S, and can shift it to complete parsing
- That sends us to a state where we can reduce our artificial start symbol, and declare victory

$$
\begin{aligned}
S^{\prime} \rightarrow S . & S \\
& S^{\prime} \rightarrow . S \\
& S \rightarrow .(L) \\
& S \rightarrow . x
\end{aligned}
$$

- We might shift an ' x ' terminal

$$
\mathrm{S}^{\prime} \rightarrow \mathrm{S.} \Perp^{\mathrm{S}} \underset{\mathrm{~S} \rightarrow \mathrm{~S}}{\mathrm{~S} \rightarrow \mathrm{~S}} \stackrel{\mathrm{X}}{\mathrm{~S} \rightarrow .(\mathrm{L})} \mathrm{S} \rightarrow \mathrm{x}
$$

- This completes another production (. is at the end), so it is also a state where we have found a reduction

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

The final thing that can happen

- We might shift a '(' terminal

$$
\begin{aligned}
& S^{\prime} \rightarrow \text { S. } \overbrace{}^{S} \xrightarrow[S \rightarrow . S]{ } \xrightarrow{x} S \rightarrow x . \\
& S \rightarrow \text {.(L) } \\
& S \rightarrow . \mathrm{X} \xrightarrow{\rightarrow} \rightarrow(. \mathrm{L})
\end{aligned}
$$

- This doesn't complete any productions, so we'll have to build more states
- Start over, with the closure at the destination state

The closure at $\mathrm{S} \rightarrow$ (.L)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

- A non-terminal follows the position marker
- That can expand into

$$
\begin{aligned}
& \mathrm{L} \rightarrow \mathrm{~S} \\
& \mathrm{~L} \rightarrow \mathrm{~L}, \mathrm{~S} \\
& S^{\prime} \rightarrow \text { S. } \overbrace{}^{S} S^{\prime} \rightarrow . S \xrightarrow{X} \rightarrow S \rightarrow x . \\
& S \rightarrow \text {.(L) } \\
& S \rightarrow . \mathrm{X} \xrightarrow[\mathrm{~S} \rightarrow(\mathrm{~L})]{ } \\
& L \rightarrow . S \\
& L \rightarrow . L, S
\end{aligned}
$$

We're not done yet

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

- The expansion put the position marker ahead of another nonterminal (that is, S)
- S can expand into

$$
\begin{aligned}
& S \rightarrow(L) \\
& S \rightarrow x
\end{aligned}
$$

Time to shift more symbols

- Reducing states are easy to find, shifting S or x completes a production
- We already have a state for $S \rightarrow x$.
$-L \rightarrow S$. is the other reducing state we can reach in one shift

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

- The remaining two items both suggest shifting an L
- That's one transition, but both items can be a reason to take it

- The position marker doesn't precede any nonterminals, so this is all the closure we need

The nested parentheses

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

- Shifting for the item $S \rightarrow$.(L) leads to $S \rightarrow$ (.L)
- That's the item we created this state from
- Thus, the transition must lead to the same state

Two alternatives

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

- Shift a ')' terminal, or a ',' terminal
- The ')' leads to a reducing state
- ',' leads to an item we haven't treated yet, so make a state, and find the closure it represents

There's one more state

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow(L) \\
& S \rightarrow x \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

- The only new thing here is that we can finalize parsing of the production $L \rightarrow L, S$
- 'x' and '(' lead to states we have already created

That's our LR(0) automaton

- There is a bit of window-dressing to transform it into a table, we can look at that next time

- As you may have noticed
- Wrt. the Kleene closure of regex (r^{*}), we saw that it's an infinite set
- The epsilon closures have the added constraint that no character should be matched, so they become finite sets of states
- Today's closures of items have the same constraint, for much the same reason
- There is a pattern here
- The way we find FOLLOW sets in top-down parsing is the exact same principle at work too, I just didn't say it out loud at the time

The General Approach (in a very pseudo-code way)

1) Initialize some number of sets
2) Update them so that they satisfy all constraints
3) Record whether any of them changed because of step 2
4) If any did, repeat from step 2
5) If none did, declare victory

- This is "iteration to a fixed point" (victory is the "fixed point")
- Calling it by that name foreshadows something deeper, every program can be rewritten as a constraint problem
- We're moving outside compiler construction here, so never mind
- I mention it still
...because recognizing this pattern on sight might make it easier to remember all our different variants.

