$L R(0)$ parsing tables (and their application)

Where we are

- Last time, we looked at how stack machines remember the history of CFG productions they have taken, either
- implicitly (via the function call stack), or
- explicitly (automata with internal stacks)
- We constructed a pseudo-code $L L(1)$ parser, based on its parsing table
- Nice, because it is simple by hand
- We constructed an $\operatorname{LR}(0)$ automaton from a simple grammar
- Nice to know how parser generator output works (roughly)

This is the $L R(0)$ automaton we got out

(Number the productions) $\longrightarrow 0) S^{\prime} \rightarrow S$

Number Everything

2) $S \rightarrow x$
3) $L \rightarrow S$
4) $L \rightarrow L, S$

- Since we want a table, it must have some indices

(Number the states)

Tabulate the transitions

- The rows are our state indices
- The symbols we're looking at are at the top of the stack, they can be terminals or nonterminals
- Terminals appear when you shift them there from the input
- Non-terminals appear when some production is reduced
- Each pair of (state,symbol) identifies an action
- Those are the table entries
- We've got three types of actions
- Shift symbol and change to state
- Go to state
- Accept
(written as "s\#", where \# is the state)
(written as " $\mathrm{g} \#$ ", where \# is the state)
(written as "a")

Structure of the table

0) $S^{\prime} \rightarrow S$
1) $S \rightarrow(L)$
2) $S \rightarrow x$
3) $L \rightarrow S$
4) $L \rightarrow L, S$

- Here's the automaton, and its empty parsing table:
(Terminals)

	$($	$)$	x	,	$\$$	S

Filling it in

- Going through all the states that aren't accepting or reducing, look at the transitions
- Transitions on terminals get a shift-and-go-to action
- Transitions on nonterminals just the go-to part

State 1

0) $S^{\prime} \rightarrow S$
1) $S \rightarrow(L)$
2) $S \rightarrow x$
3) $L \rightarrow S$
4) $L \rightarrow L, S$

- There is S, x, and (

State 3

0) $S^{\prime} \rightarrow S$
1) $S \rightarrow(L)$
2) $S \rightarrow x$
3) $L \rightarrow S$
4) $L \rightarrow L, S$

- There is S, x, (, and L

	()	x		\$	S	L
1	s3		s2			g4	
2							
3	s3		s2			g7	g5
4							
5							
6							
7							
8							
9							
			0			rond	

State 5

0) $S^{\prime} \rightarrow S$
1) $S \rightarrow(L)$
2) $S \rightarrow x$
3) $L \rightarrow S$
4) $L \rightarrow L, S$

- There is) and ,

	()	x	,	\$	S	L
1	s3		s2			g4	
2							
3	s3		s2			g7	g5
4							
5		s6		s8			
6							
7							
8							
9							

$$
\begin{aligned}
& \text { 0) } S^{\prime} \rightarrow S \\
& \text { 1) } S \rightarrow \text { (L) } \\
& \text { 2) } S \rightarrow x \\
& \text { 3) } L \rightarrow S \\
& \text { 4) } L \rightarrow L, S
\end{aligned}
$$

- There is x, (, and S

	()	x	,	\$	S	L
1	s3		s2			g4	
2							
3	s3		s2			g7	g5
4							
5		s6		s8			
6							
7							
8	s3		s2			g9	
9							

Halfway there

- Those were the 'ordinary' states, we still need to do something with reducing states and accept
- For $\operatorname{LR}(0)$, a reducing state has no need to know anything about the top of the stack
- It's determined because building a particular sequence at the top of the stack is what brought us to the reducing state in the first place
- Thus, reduce actions go in every terminal column for the reducing state
- We can write them as "r\#" where \# is the grammar production being reduced

$$
\begin{aligned}
& \text { 0) } S^{\prime} \rightarrow S \\
& \text { 1) } S \rightarrow \text { (L) } \\
& \text { 2) } S \rightarrow x \\
& \text { 3) } L \rightarrow S \\
& \text { 4) } L \rightarrow L, S
\end{aligned}
$$

- This reduces rule \#2, S $\rightarrow \mathrm{x}$

	$($	$)$	x	,	\$	s	L
1	s3		s2			$g 4$	
2	r2	r2	r2	r2	r2		
3	s3		s2			$g 7$	$g 5$
4							
5		s6		s8			
6							
7							
8	s3		s2			$g 9$	
9							

$$
\begin{aligned}
& \text { 0) } S^{\prime} \rightarrow S \\
& \text { 1) } S \rightarrow \text { (L) } \\
& \text { 2) } S \rightarrow x \\
& \text { 3) } L \rightarrow S \\
& \text { 4) } L \rightarrow L, S
\end{aligned}
$$

- This reduces rule \#1, S \rightarrow (L)

	()	x	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4							
5		s6		s8			
6	r1	r1	r1	r1	r1		
7							
8	s3		s2			g9	
9							

> 0) $S^{\prime} \rightarrow S$
> 1) $S \rightarrow(L)$
> 2) $S \rightarrow x$
> 3) $L \rightarrow S$
> 4) $L \rightarrow L, S$

State 7

- This reduces rule \#3, L \rightarrow S

	()	x		\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4							
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9							

0) $S^{\prime} \rightarrow S$
1) $S \rightarrow(L)$
2) $S \rightarrow x$
3) $L \rightarrow S$
4) $L \rightarrow L, S$

- This reduces rule \#4, L $\rightarrow \mathrm{L}, \mathrm{S}$

	()	x	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4							
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

The accepting state

- Accepting states are extremely easy since we started by adding an extra grammar rule to represent this alone
- That is, $S^{\prime} \rightarrow S$
- If the input is correct, this reduces precisely when we are out of terminals
- So: shift the end-of-input marker, and conclude parsing

State 4 accepts

0) $S^{\prime} \rightarrow S$
1) $S \rightarrow(L)$
2) $S \rightarrow x$
3) $L \rightarrow S$
4) $L \rightarrow L, S$

- This reduces our whole syntax enchilada

	()	x		\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

A bottom-up traversal

- Using the table we've constructed, we can see how it plays out when parsing a statement like ($\mathrm{x},(\mathrm{x}, \mathrm{x})$)

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

The procedure has 29 steps, so we'll have to do it in parts...

(History)	State	Stack	Input	Action	(Backtrack)
	1	-	$(\mathrm{x},(\mathrm{x}, \mathrm{x}))$	s 3	
1	3	$($	$\mathrm{x},(\mathrm{x}, \mathrm{x}))$	s 2	
1,3	2	$(\mathrm{x}$	$,(\mathrm{x}, \mathrm{x}))$	r 2	Throw 2, rev. to 3
1	3	$(\mathrm{~S}$	$,(\mathrm{x}, \mathrm{x}))$	g 7	
1,3	7	$(\mathrm{~S}$	$,(\mathrm{x}, \mathrm{x}))$	r 3	Throw 7, rev. to 3
1	3	$(\mathrm{~L}$	$,(\mathrm{x}, \mathrm{x}))$	g 5	
1,3	5	$(\mathrm{~L}$	$,(\mathrm{x}, \mathrm{x}))$	s 8	
$1,3,5$	8	$(\mathrm{~L}$,	$(\mathrm{x}, \mathrm{x}))$	s 3	
$1,3,5,8$	3	$(\mathrm{~L},($	$\mathrm{x}, \mathrm{x}))$	s 2	
$1,3,5,8,3$	2	$(\mathrm{~L},(\mathrm{x}$	$, \mathrm{x}))$	r 2	Throw 2, rev. to 3
$1,3,5,8$	3	$(\mathrm{~L},(\mathrm{~S}$	$, \mathrm{x}))$	$\mathrm{g})$	
$1,3,5,8,3$	7	$(\mathrm{~L},(\mathrm{~S}$	$, \mathrm{x}))$	r 3	Throw 7, rev. to 3
$1,3,5,8$	3	$(\mathrm{~L},(\mathrm{~L}$	$, \mathrm{x}))$	$\mathrm{g})$	
$1,3,5,8,3$	5	$(\mathrm{~L},(\mathrm{~L}$	$, \mathrm{x}))$	s 8	

(Replicate the last row, pick up where we were)

(History)	State	Stack	Input	Action	(Backtrack)
$1,3,5,8,3$	5	$(\mathrm{~L},(\mathrm{~L}$	$, \mathrm{x}))$	s 8	
$1,3,5,8,3,5$	8	$(\mathrm{~L},(\mathrm{~L}$,	$\mathrm{x}))$	s 2	
$1,3,5,8,3,5,8$	2	$(\mathrm{~L},(\mathrm{~L}, \mathrm{x}$	$))$	r 2	Throw 2, rev. to 8
$1,3,5,8,3,5$	8	$(\mathrm{~L},(\mathrm{~L}, \mathrm{~S}$	$))$	g 9	
$1,3,5,8,3,5,8$	9	$(\mathrm{~L},(\mathrm{~L}, \mathrm{~S}$	$))$	r 4	Throw 9,8,5, rev. to 3
$1,3,5,8$	3	$(\mathrm{~L},(\mathrm{~L}$	$))$	g 5	
$1,3,5,8,3$	5	$(\mathrm{~L},(\mathrm{~L}$	$))$	s 6	
$1,3,5,8,3,5$	6	$(\mathrm{~L},(\mathrm{~L})$	$)$	r 4	Throw 6,5,3, rev. to 8
$1,3,5$	8	$(\mathrm{~L}, \mathrm{~S}$	$)$	g 9	
$1,3,5,8$	9	$(\mathrm{~L}, \mathrm{~S}$	$)$	r 4	Throw 9,8,5, rev. to 3
1	3	$(\mathrm{~L}$	$)$	g 5	
1,3	5	$(\mathrm{~L}$	$)$	s 6	
$1,3,5$	6	$(\mathrm{~L})$	$\$$	r 4	Throw 6,5,3, rev. to 1
-	1	S	$\$$	g 4	

In state 4...

| (History) | State | Stack | Input | Action | (Backtrack) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | 4 | S | $\$$ | accept | |

...that's all she wrote.

- We have read all the input, and gotten the start symbol + the end of input

The '0' in LR(0)

- It can be slightly tricky to see how the machine operates
- At least if you're stuck in the $\operatorname{LL}(1)$ mind-set of making decisions based on what's coming next on the input
- The ' 0 ' is ' 0 lookahead symbols'
- If there is no transition to take based on the top-of-stack, shift another token and then see where it takes you
- The shift-and-go-to maneuver could merit 2 rows of derivation steps, but then our walkthrough would be almost twice as long

A cleaner diagram

- If we simplify the machine a little, it looks like this:

The beginning of our traversal

- The first few steps went

$$
1,3,2,3,7,3,5,8,3,2, \ldots
$$

(Trace it out with your finger)

The matching syntax (sub-)trees

- 1,3,2 walks through
(S
x
- 3,7 extends what we've seen (and remember) to

The matching syntax (sub-)trees

- 3,5,8,3,2,3,7 passes a ',' $5 \rightarrow 8$, and a '(${ }^{8 \rightarrow 3}$, and does the same thing over again

The matching syntax (sub-)trees

- $3,5,8,2,8$ passes ',' $5 \rightarrow 8$, reduces $S(8 \rightarrow 2$ and back)...

The matching syntax (sub-)trees

- If we strike out the detours/backtracking,
($1,3,5,8,3,5,8$) is where we were before reaching 9

The matching syntax (sub-)trees

- We're beginning to get right-hand sides which are not just trivial 1-symbol reductions

State 9, Eureka!

The matching syntax (sub-)trees

- State 9 reduces a right-hand side with multiple non-terminals, and must revert by 3 stages because it concludes 3 choices of direction: the L , the comma, and the S .

...and so it proceeds...

...shifting), and passing by the reduction in state 6...

...and proceeds...

...visiting state 9 again, to reduce another L...

...until the end.

ロ

As you can see

- Top-down parsing creates leftmost derivations, by taking the leftmost nonterminal and predicting the input yet to come
- Bottom-up parsing creates rightmost derivations, by working ahead in the input, and stacking up all the nonterminals it passed on the way, until they are completed

What's ahead

- We already know of DFA that they can give conflicting decisions:

- Regular expression matchers commonly buffer, and accept the longest match in the end
- LR parsers see these situations as well, they're called shift/reduce conflicts in such a context
- LR(0) isn't very flexible when it comes to these, so next, we'll extend it with different ways to see what's coming.

