SLR, LALR and LR(1) parsing tables

Limitations of LR(0)

- We have seen how LR parsing operates in terms of an automaton + a stack
- States are created from closures of items
- Transitions are actions based on the top of the stack, either before or after the next token is shifted
- The grammars that fit $\mathrm{LR}(0)$ are a bit more restrictive than they need to be
- Specifically, they can stall on decisions which can easily be resolved by looking ahead in the token stream

To shift, or to reduce?

- Consider this grammar (which models arbitrarily long sums of terms)

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E}
\end{aligned}
$$

$$
\mathrm{E} \rightarrow \mathrm{~T} \quad \text { (An expr. can be a term) }
$$

$$
\mathrm{T} \rightarrow \mathrm{x} \quad \text { (A term can be a number, variable, whatever) }
$$

- The start symbol has just one production, we won't need to augment the grammar with any placeholder

In short order

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{~T} \\
& \mathrm{~T} \rightarrow \mathrm{X}
\end{aligned}
$$

- Closure of $S \rightarrow$.E is a state

```
S C E
E T.T + E
E T.T
T->.x
```

- Transitions on E, T, x, find closures at destination:

Whoops, there is a reduction here

In short order

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow T+E \\
& E \rightarrow T \\
& T \rightarrow X
\end{aligned}
$$

- Transition on +, find closure at destination

In short order

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{~T} \\
& \mathrm{~T} \rightarrow \mathrm{X}
\end{aligned}
$$

- Transitions on T, E, x, closures, and we're done

Numbers everywhere

0) $S \rightarrow E$
1) $E \rightarrow T+E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- In the grammar, and on the states

Most of the $\operatorname{LR}(0)$ table

0) $S \rightarrow E$
1) $E \rightarrow T+E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- Here's what we get for the unproblematic states:

Shift/reduce conflict

0) $S \rightarrow E$
1) $E \rightarrow T+E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- State 3 could shift and go to 4 on ' + ’

Shift/reduce conflict

0) $S \rightarrow E$
1) $E \rightarrow T+E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- State 3 could also reduce production 2
- Parser can't decide here

	x	+	\$	E	T
1	s5			g2	g3
2			a		
3	r2	r2,s4	r2		
4	s5			g6	g3
5	r3	r3	r3		
6	r1	r1	r1		
6					
			NTNU - Trondheim Norwegian University of Science and Technology		

The immediate solution

- Wait with reductions until there are no more + tokens to shift
- Like the longest match rule for regex
- All we need to know is what the next token will be
- Buffer it, to look at what's coming
- When are we interested?
- When the next token belongs to a construct that only comes after the nonterminal we are working through a production for
- We did that already
- For a production $A \rightarrow \alpha$, any expected token which isn't in α goes into the set of tokens FOLLOW(A)
- That is its definition

Reworking the reductions

- With 1 token lookahead, reducing states no longer need to reduce regardless of what comes next
- We can insert reduce actions a little more selectively, that is

When an item $A \rightarrow \alpha$. suggests that a state is reducing, put the reducing action in the table only at tokens in FOLLOW(A)

Reworking the reductions

0) $S \rightarrow E$
1) $E \rightarrow T+E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- $E \rightarrow T$. is our problem item here
- $\operatorname{FOLLOW}(E)=\{\$\}$, by prod. $0 ; E$ always remains on the far right in derivations
- $E \rightarrow T+E$. is a reduction, too
- We already found FOLLOW(E)
- T $\rightarrow \mathrm{x}$.
$\operatorname{FOLLOW}(T)=\{+, \$\} \quad(+$ because of prd. $1, \$$ because of prd. 2)
- $S \rightarrow E$.
$\operatorname{FOLLOW}(S)=\{\$\} \quad(S$ is never on a r.h.s of anything)

An updated table

0) $S \rightarrow E$
1) $E \rightarrow T+E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- Taking this into account, state 3 is no longer difficult
- Changes affect these rows

	x	+	\$	E	T
1	s5			g2	g3
2			a		
3		s4	r2		
4	s5			g6	g3
5		r3	r3		
6			r1		
	[0.				

That was the SLR table

aka. "Simple LR"

- So named because it is just a tiny adjustment of the LR(0) scheme
- It does not, however, take all the information that it can out of having a lookahead symbol
- That's what the full-blown LR(1) scheme does

A grammar that needs more

- To revamp the whole scheme with lookahead symbols, the idea of an item can be extended
- Take this (sub-)grammar of expressions, variables, and pointer dereference a la C:

S' \rightarrow S (Unique production to start with)
$\mathrm{S} \rightarrow \mathrm{V}=\mathrm{E} \quad$ (Expr. can be assigned to variables)
$S \rightarrow E \quad$ (Expressions are statements)
$\mathrm{E} \rightarrow \mathrm{V} \quad$ (Variables are expressions)
$\mathrm{V} \rightarrow \mathrm{x} \quad$ (Variables can be identifiers)
$\mathrm{V} \rightarrow{ }^{*} \mathrm{E} \quad$ (Variables can be dereferenced pointer expressions)
(...and pointer expressions can have variables in them...)

- This is not SLR
(Can you figure out why not?)

Revisit the items

- $L R(1)$ items include a lookahead symbol
$A \rightarrow \alpha . X \beta \quad$ says we're ahead of X between α and β
$A \rightarrow \alpha . X \beta t \quad$ says the same, but t is the next token
- Take an item like [$\mathrm{A} \rightarrow . \mathrm{X}$ \& \%]
'\%' might be found in some expansion of X, so we need
$X \rightarrow$.<something> $\%$
$X \rightarrow$.<somethingelse> \%
and all variants of X while foreseeing '\%'.
- It can also be that X will reduce without shifting more stuff

The production says that we might see ' $\&$ ' as lookahead at this point, so
$\mathrm{X} \rightarrow$. <something> \&
$X \rightarrow$.<somethingelse> \&
are also possibilities we must include in the closure.

For our grammar

- Starting out as before, we get that

$$
S^{\prime} \rightarrow . S \quad ?
$$

has no sensible lookahead, because you can't look beyond the end

- After S comes \$, carry that through all nonterminal expansions

$$
\begin{array}{ll}
S \rightarrow . V=E & \$ \\
S \rightarrow . E & \$ \\
E \rightarrow . V & \$ \\
V \rightarrow . x & \$ \\
V \rightarrow .{ }^{*} E & \$
\end{array}
$$ lookaheads?

- Looking at

$$
S \rightarrow . V=E
$$

it is possible that we're about to go to work on a V , and there is an ' $=$ ' token coming up after it

- Taking it into account

$$
S \rightarrow . V=E
$$

gives that

$$
\begin{array}{ll}
\mathrm{V} \rightarrow . \mathrm{x} & = \\
\mathrm{V} \rightarrow .{ }^{*} \mathrm{E} & =
\end{array}
$$

also belong in the closure of $\operatorname{LR}(1)$ items
(In excessive notation, include the item $[X \rightarrow \alpha, \omega]$ for ω in $\operatorname{FIRST}(\beta z)$ where the item you're working out the closure for can be written $[A \rightarrow \alpha . X \beta, z] \ldots$)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow V=E \\
& S \rightarrow E \\
& E \rightarrow V \\
& V \rightarrow x \\
& V \rightarrow{ }^{*} E
\end{aligned}
$$

- The first state of our $\operatorname{LR}(1)$ automaton thus becomes

$\mathrm{S} \rightarrow . \mathrm{S}$	$?$
$\mathrm{~S} \rightarrow . \mathrm{V}=\mathrm{E}$	$\$$
$\mathrm{~S} \rightarrow . \mathrm{E}$	$\$$
$\mathrm{E} \rightarrow . \mathrm{V}$	$\$$
$\mathrm{~V} \rightarrow . \mathrm{X}$	$\$$
$\mathrm{~V} \rightarrow .{ }^{*} \mathrm{E}$	$\$$
$\mathrm{~V} \rightarrow . \mathrm{x}$	$=$
$\mathrm{V} \rightarrow .^{*} \mathrm{E}$	$=$

which we might as well write

$\mathrm{S} \rightarrow . \mathrm{S}$	$?$
$\mathrm{~S} \rightarrow . \mathrm{V}=\mathrm{E}$	$\$$
$\mathrm{~S} \rightarrow . \mathrm{E}$	$\$$
$\mathrm{E} \rightarrow . \mathrm{V}$	$\$$
$\mathrm{~V} \rightarrow . \mathrm{X}$	$\$,=$
$\mathrm{V} \rightarrow .{ }^{*} \mathrm{E}$	$\$,=$

Building the automaton

- The procedure remains the same, just with more elaborate closures

$S^{\prime} \rightarrow$ S.		$V, S \rightarrow V .=E$	\$
		$\checkmark E \rightarrow V$.	\$
$S^{\prime} \rightarrow$. S	?	${ }^{E} \nabla \mathrm{~S} \rightarrow \mathrm{E}$.	\$
$S \rightarrow . V=E$	\$		
$S \rightarrow . E$	\$	- $\mathrm{V} \rightarrow \mathrm{x}$.	\$,=
$\mathrm{E} \rightarrow . \mathrm{V}$	\$		
$\vee \rightarrow . \mathrm{x}$	\$, =		
$V \rightarrow . * E$	\$, =		
∇			
$\mathrm{V} \rightarrow{ }^{*} . \mathrm{E}$	\$,=		
$\mathrm{E} \rightarrow . \mathrm{V}$	\$,=		
$V \rightarrow . \mathrm{x}$	\$,=		
$\vee \rightarrow . * E$	\$,=		

$S^{\prime} \rightarrow S$
$S \rightarrow V=E$
$S \rightarrow E$
$E \rightarrow V$
$V \rightarrow x$
$V \rightarrow{ }^{*} E$

Building the automaton

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow V=E \\
& S \rightarrow E \\
& E \rightarrow V \\
& V \rightarrow x \\
& V \rightarrow{ }^{*} E
\end{aligned}
$$

$S^{\prime} \rightarrow S$
$S \rightarrow V=E$
$S \rightarrow E$
$E \rightarrow V$
$V \rightarrow x$
$V \rightarrow{ }^{*} E$

Building the automaton

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow V=E \\
& S \rightarrow E \\
& E \rightarrow V \\
& V \rightarrow x \\
& V \rightarrow{ }^{*} E
\end{aligned}
$$

Thisisit

0) $S^{\prime} \rightarrow S$

1) $S \rightarrow V=E$ 2) $S \rightarrow E$
2) $E \rightarrow V$

$$
\begin{aligned}
& \text { 4) } \vee \rightarrow x \\
& \text { 5) } \vee \rightarrow{ }^{*} E
\end{aligned}
$$

Number states \& productions

Where to put reduce actions

- When an item reduces, its lookahead symbol decides where to tabulate the reduction
- That's the reason why we wanted to track lookahead symbols in the first place

As you may notice

Some of these states are pretty similar...
0) $S^{\prime} \rightarrow S$

1) $S \rightarrow V=E$
2) $S \rightarrow E$
3) $E \rightarrow V$
4) $V \rightarrow x$
5) $\vee \rightarrow$ * E

What if we merge them?

i.e. those which are similar except for the lookahead
0) $S^{\prime} \rightarrow S$

1) $S \rightarrow V=E$
2) $S \rightarrow E$
3) $E \rightarrow V$
4) $V \rightarrow x$
5) $\vee \rightarrow$ * E

E 10
0) $S^{\prime} \rightarrow S$

1) $S \rightarrow V=E$
2) $S \rightarrow E$

LALR parsing table

3) $E \rightarrow V$
4) $V \rightarrow x$
5) $V \rightarrow$ * E

LR parsing + this state reduction is Look-Ahead LR (LALR)

	X	*	$=$	\$	S	E	V
1	s8	s6			g2	g5	g3
2				a			
3			s4	r3			
4	s8	s6				g9	g7
5				r2			
6	s8	s6				g10	g7
7			r3	r3			
8			r4	r4			
9				r1			
10			r5	r5			

