

1

Syntax analysis and syntax-directed translation

TDT4205 – Lecture 12

2

Return to the big picture

Lexical
analysis

Syntactic
analysis

Text Tokens ?

High-level
intermediate
representation

We are here
somewhere

3

Implementation by generators

Lexical
analyzer
(scanner)

Syntax
analyzer
(parser)

Text Tokens ?

High-level
intermediate
representation

This goes in the compiler

Lex Yacc

Word
classes

Grammar

regex CFG

This is from the language definition

4

Footnotes on syntax analysis

• A few factoids didn’t fit naturally anywhere

• We’ve looked at different classes of languages
– Regular languages

– Context-free languages

– LL(1)-parseable languages

– LR-parseable languages
...in LR(0), SLR, LALR and LR(1) flavors…

• We’ve looked at shift/reduce conflicts
– There are also reduce/reduce conflicts

5

Relationships of grammar classes

LL(0)

SLR

LALR(1)

LR(1)LL(1)

LR(0)

6

This part exists

LL(0)

SLR

LALR(1)

LR(1)LL(1)

LR(0)

- You can construct languages that are LL(1) but not LALR(1)
- It’s mostly an artificial exercise in order to prove a point

7

Reduce/reduce conflicts

• These arise when a state contains multiple reducing
items for different productions

• Consider the grammar
A → By | Cy

B → x | z

C → w | z

• It’s ambiguous, you can derive
A → By → zy

A → Cy → zy

8

Reduce/reduce conflicts

• Writing out part of an automaton,
A → .By
A → .Cy
B → .x
B → .z
C → .w
C → .z

B → z.
C → z.

What to reduce here?
z

9

That was a trivial example

• It can happen if you’re not careful, suppose we allow
<type> <identifier> (<identifier-list>)

for function declarations,

<type> <identifier> (<size>)

for array declarations, and

<identifier-list> → <identifier> (1-element argument lists)

<size> → <identifier> (Variable size arrays)

then
int my_thing (some_number)

can declare either an array or a function

10

Living with conflicts

• As far as ambiguity goes, shift/reduce conflicts are
relatively benevolent, they can be resolved by imposing
a rule
– Colloquially, how far should we look to select an interpretation

• Reduce/reduce conflicts are a symptom that the
grammar is broken
– Colloquially, one block of text has two meanings

– Fixing these by enforcing a precedence creates languages with
confusing rules, because they’re entirely implicit in the source text

– In my opinion, it is better to repair the grammar in this case

11

On our way to high IR

• With a keen eye, you may have noticed that we’ve
been slipping some ideas sideways into the syntax
– Precedence rules for ambiguous operators

– Matching rules for ambiguous nesting of if-statements

• These aren’t technically syntax analysis, since they
imply that statements say meaningful things
– We’re imposing semantics

12

I have been telling a small lie

Lexical
analyzer
(scanner)

Syntax
analyzer
(parser)

Text Tokens ?

High-level
intermediate
representation

This goes in the compiler

Lex Yacc

Word
classes

Grammar

regex CFG

This is from the language definition

These two are not
entirely independent

13

The connection

• When a parser applies a grammar rule (by predicting
or reducing), we have an opportunity to affect the
overall program state however we want
– Yacc allows productions to carry blocks of C that are run when the

rule reduces
– The symbols of the prod. body are on stack, positions $1, $2, $3, …
– The newly created, reduced symbol is available as $$
– We can take the opportunity to attach a data structure to those, to

capture all the information that isn’t evident in the grammar

14

Syntax-directed translation

• The syntax-directed bit is that this information is
derived by connecting it with the relevant production
– Thus, we can be sure to cover the translation of every possible type

of statement

• The translation part is to go from text into another
structure that equivalently captures the meaning of
the program

15

In olden times

• Compilers are complicated programs, their speed and
size used to be of great importance
– It still is when programs grow large, but we don’t need to worry quite

as much in the age of fast processors and vast memory

• If you take care with how you define your language,
everything interesting about the source program can be
detected during parsing
– You can write the entire compiler into the semantic actions, and make

one that directly blurts out machine code as soon as it sees a construct

– One big pass of reading and writing, very efficient

16

That requires a certain
ordering
• Symbols need to be annotated with stuff that is

detected along the way
– When you see an identifier in syntax, what is its name? (attach the

lexeme)

– When you see a list of declarations, how to remember their type?

int

declaration

list

x list

y
...

Information must travel
down the syntax tree

17

Attributes

• The internal representation of a symbol can be any ol’
struct, object, what-have-you

• Rather than just a token value, it can have elements
that capture the additional information
– Number symbols naturally invite a property Number.value

– Identifiers might have Identifier.name and Identifier.type
– Functions can be well served with a Function.argument_count

etc. etc.

18

Inherited and synthesized

• In a syntax tree representation, inherited attributes
come from above, synthesized attributes come from
below

+

=foo Expression

2 3

Assignment Inherit:
Assignment.target_type = float

Synthesize:
Expression.value = 5

(Deduce: This 5 needs to be 5.0)

19

L-attribution

• L-attributed grammars allow synthesized attributes,
and inheritance from the left

+

=foo

Expression

2 3

Assignment

Expression

+

2 3

Expression

Information about
foo can travel
like this
(left-to-right)

20

L-attribution

• L-attributed grammars allow synthesized attributes,
and inheritance from the left

+

=

Expression

2 3

Expression

+

2 3

Expression

Information in the
expression can not
travel like this
(right-to-left)

Assignment

foo

21

L-attribution and pred. parsing
• This makes sense if you look at the traversal order of a

predictive parser

• It goes from top to bottom and back again, but left-to-right at any
given level in the tree

+

=

Expression

2 3

Expression

+

2 3

Expression

Assignment

foo
Expression

Expression

Expression

22

S-attribution

• All attributes are synthesized, information comes
from below

+

=

Expression

2 3

Expression

+

2 3

Expression

Assignment

foo
Expression

Expression

Expression

Confer w. traversal
order of bottom-up
parser

23

One convenient use

• I have been drawing syntax trees to illustrate the
traversal orders of parsing all the while we were talking
about them

• The act of parsing does not in and of itself construct a
syntax tree, it just traces the traversal order

• When it’s not so important to do everything at once
– SDD actions offer a fine opportunity to build the syntax tree, by

hooking tree nodes that represent the symbols together
– That way, we can detect everything needed by going through the tree

structure forwards, backwards, and sideways after parsing is finished

24

Connecting symbols

• Here’s another syntax tree, for a familiar type of
statement

x

=

x + 1

expr

25

Translation in pseudo-code

• What will have to happen here is
– Take a number out of one memory location
– Add 1 to it
– Put it back in the same memory location it came from

x

=

x + 1

expr

26

X marks the spot

• When we’re translating the +, we’ll have to get the
memory location based on this node

• The assignment uses this node

x

=

x + 1

expr

27

Symbol tables
• It’s convenient to keep a table where all the

information about names go, and connect the nodes
to it

x

=

x + 1

expr

Name Location Type ...etc…
x 2048 int blah

Thus, all x nodes
refer to the same
thing

28

Implementation of symbol
tables
• Making this happen requires us to find the table entry

for “x” every time that name appears
– The name has to be enough to look it up, so we have a text search

problem

• Three ways readily suggest themselves:
– Direct indexing (Keep a table where index is a function of the text)

– Linked list (Keep a dynamic list, go through it and compare)

– Hash table

29

Direct index and linked list

• Compilers look up names all the time, programs are
positively packed full of names

• Neither of these alternatives are great
– Direct indexing is very fast, but limits the number of identifiers to the

size of the symbol table
– Linked list is perfectly flexible, but requires that we search through

variables #1,#2,#3,#4… every time we look up variable #270

30

Hash tables

• An unpredictable, fixed-length code can be computed
from any length of identifier

• Fixed-length array of linked lists, search and compare

foobar

H(“foobar”)
= 2

0

1

2

3

31

Hash tables are a good
compromise
• Constant time to find the right list to search

• If the hashing function distributes evenly, search time
is divided by the number of lists

• Balance between static size limitation and list length
can be adjusted depending on data that goes in

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

