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Syntax analysis and syntax-directed translation

TDT4205 – Lecture 12
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Return to the big picture

Lexical
analysis

Syntactic
analysis

Text Tokens ?

High-level
intermediate
representation

We are here
somewhere
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Implementation by generators

Lexical
analyzer
(scanner)

Syntax
analyzer
(parser)

Text Tokens ?

High-level
intermediate
representation

This goes in the compiler

Lex Yacc

Word
classes

Grammar

regex CFG

This is from the language definition
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Footnotes on syntax analysis

• A few factoids didn’t fit naturally anywhere

• We’ve looked at different classes of languages
– Regular languages

– Context-free languages

– LL(1)-parseable languages

– LR-parseable languages
...in LR(0), SLR, LALR and LR(1) flavors…

• We’ve looked at shift/reduce conflicts
– There are also reduce/reduce conflicts
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Relationships of grammar classes

LL(0)

SLR

LALR(1)

LR(1)LL(1)

LR(0)
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This part exists

LL(0)

SLR

LALR(1)

LR(1)LL(1)

LR(0)

- You can construct languages that are LL(1) but not LALR(1)
- It’s mostly an artificial exercise in order to prove a point
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Reduce/reduce conflicts

• These arise when a state contains multiple reducing 
items for different productions

• Consider the grammar
A → By | Cy

B → x | z

C → w | z

• It’s ambiguous, you can derive
A → By → zy

A → Cy → zy
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Reduce/reduce conflicts

• Writing out part of an automaton,
A → .By
A → .Cy
B → .x
B → .z
C → .w
C → .z

B → z.
C → z.

What to reduce here?
z
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That was a trivial example

• It can happen if you’re not careful, suppose we allow
<type> <identifier> ( <identifier-list> )

for function declarations,

<type> <identifier> ( <size> )

for array declarations, and

<identifier-list> → <identifier> (1-element argument lists)

<size> → <identifier>               (Variable size arrays)

then
int my_thing ( some_number )

can declare either an array or a function
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Living with conflicts

• As far as ambiguity goes, shift/reduce conflicts are 
relatively benevolent, they can be resolved by imposing 
a rule
– Colloquially, how far should we look to select an interpretation

• Reduce/reduce conflicts are a symptom that the 
grammar is broken
– Colloquially, one block of text has two meanings

– Fixing these by enforcing a precedence creates languages with 
confusing rules, because they’re entirely implicit in the source text

– In my opinion, it is better to repair the grammar in this case
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On our way to high IR

• With a keen eye, you may have noticed that we’ve 
been slipping some ideas sideways into the syntax
– Precedence rules for ambiguous operators

– Matching rules for ambiguous nesting of if-statements

• These aren’t technically syntax analysis, since they 
imply that statements say meaningful things
– We’re imposing semantics



  

12

I have been telling a small lie

Lexical
analyzer
(scanner)

Syntax
analyzer
(parser)

Text Tokens ?

High-level
intermediate
representation

This goes in the compiler

Lex Yacc

Word
classes

Grammar

regex CFG

This is from the language definition

These two are not
entirely independent
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The connection

• When a parser applies a grammar rule (by predicting 
or reducing), we have an opportunity to affect the 
overall program state however we want
– Yacc allows productions to carry blocks of C that are run when the 

rule reduces
– The symbols of the prod. body are on stack, positions $1, $2, $3, …
– The newly created, reduced symbol is available as $$
– We can take the opportunity to attach a data structure to those, to 

capture all the information that isn’t evident in the grammar
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Syntax-directed translation

• The syntax-directed bit is that this information is 
derived by connecting it with the relevant production
– Thus, we can be sure to cover the translation of every possible type 

of statement

• The translation part is to go from text into another 
structure that equivalently captures the meaning of 
the program
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In olden times

• Compilers are complicated programs, their speed and 
size used to be of great importance
– It still is when programs grow large, but we don’t need to worry quite 

as much in the age of fast processors and vast memory

• If you take care with how you define your language, 
everything interesting about the source program can be 
detected during parsing
– You can write the entire compiler into the semantic actions, and make 

one that directly blurts out machine code as soon as it sees a construct

– One big pass of reading and writing, very efficient
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That requires a certain 
ordering
• Symbols need to be annotated with stuff that is 

detected along the way
– When you see an identifier in syntax, what is its name? (attach the 

lexeme)

– When you see a list of declarations, how to remember their type?

int

declaration

list

x list

y
...

Information must travel
down the syntax tree
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Attributes

• The internal representation of a symbol can be any ol’ 
struct, object, what-have-you

• Rather than just a token value, it can have elements 
that capture the additional information
– Number symbols naturally invite a property Number.value

– Identifiers might have Identifier.name and Identifier.type
– Functions can be well served with a Function.argument_count

etc. etc.
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Inherited and synthesized

• In a syntax tree representation, inherited attributes 
come from above, synthesized attributes come from 
below

+

=foo Expression

2 3

Assignment Inherit:
Assignment.target_type = float

Synthesize:
Expression.value = 5

(Deduce: This 5 needs to be 5.0)
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L-attribution

• L-attributed grammars allow synthesized attributes, 
and inheritance from the left

+

=foo

Expression

2 3

Assignment

Expression

+

2 3

Expression

Information about
foo can travel
like this
(left-to-right)
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L-attribution

• L-attributed grammars allow synthesized attributes, 
and inheritance from the left

+

=

Expression

2 3

Expression

+

2 3

Expression

Information in the
expression can not
travel like this
(right-to-left)

Assignment

foo
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L-attribution and pred. parsing
• This makes sense if you look at the traversal order of a 

predictive parser

• It goes from top to bottom and back again, but left-to-right at any 
given level in the tree

+

=

Expression

2 3

Expression

+

2 3

Expression

Assignment

foo
Expression

Expression

Expression
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S-attribution

• All attributes are synthesized, information comes 
from below

+

=

Expression

2 3

Expression

+

2 3

Expression

Assignment

foo
Expression

Expression

Expression

Confer w. traversal
order of bottom-up
parser
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One convenient use

• I have been drawing syntax trees to illustrate the 
traversal orders of parsing all the while we were talking 
about them

• The act of parsing does not in and of itself construct a 
syntax tree, it just traces the traversal order

• When it’s not so important to do everything at once
– SDD actions offer a fine opportunity to build the syntax tree, by 

hooking tree nodes that represent the symbols together
– That way, we can detect everything needed by going through the tree 

structure forwards, backwards, and sideways after parsing is finished
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Connecting symbols

• Here’s another syntax tree, for a familiar type of 
statement

x

=

x + 1

expr
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Translation in pseudo-code

• What will have to happen here is
– Take a number out of one memory location
– Add 1 to it
– Put it back in the same memory location it came from

x

=

x + 1

expr
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X marks the spot

• When we’re translating the +, we’ll have to get the 
memory location based on this node

• The assignment uses this node

x

=

x + 1

expr
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Symbol tables
• It’s convenient to keep a table where all the 

information about names go, and connect the nodes 
to it

x

=

x + 1

expr

Name Location Type ...etc…
x 2048 int blah

Thus, all x nodes
refer to the same
thing



  

28

Implementation of symbol 
tables
• Making this happen requires us to find the table entry 

for “x” every time that name appears
– The name has to be enough to look it up, so we have a text search 

problem

• Three ways readily suggest themselves:
– Direct indexing  (Keep a table where index is a function of the text)

– Linked list          (Keep a dynamic list, go through it and compare)

– Hash table



  

29

Direct index and linked list

• Compilers look up names all the time, programs are 
positively packed full of names

• Neither of these alternatives are great
– Direct indexing is very fast, but limits the number of identifiers to the 

size of the symbol table
– Linked list is perfectly flexible, but requires that we search through 

variables #1,#2,#3,#4… every time we look up variable #270
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Hash tables

• An unpredictable, fixed-length code can be computed 
from any length of identifier

• Fixed-length array of linked lists, search and compare

foobar

H(“foobar”)
= 2

0

1

2

3
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Hash tables are a good 
compromise
• Constant time to find the right list to search

• If the hashing function distributes evenly, search time 
is divided by the number of lists

• Balance between static size limitation and list length 
can be adjusted depending on data that goes in
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