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Derived and abstract data types

TDT4205 – Lecture 15
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Where we were

• We’ve looked at static semantics for primitive types
– and how it relates to type checking

• We’ve hinted at derived types
– using a multidimensional array declaration as example

• We’ll round of with a quick look at more complicated 
derived types, and what they do to the type system



  

3

Type expressions

• We’ve touched upon this
int[2][3] consists of a basic type int, and ( array-of-2 (array-of-3) )

• Types can be constructed from basic types

• We’ve also mentioned that types can be converted 
into each other according to a hierarchy

(short + char) converts into their least upper bound (int), we can 
write it that as a function, lub(short,char)

double

float

long

int

short
byte

char
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Arrays can be many things

• Unbounded
Java: public static void main ( String args[] )

• Fixed size
C: char mystring[256];

(Type of mystring contains its size)

• Ranges
Ada: array[2 .. 5] of integer

(Type contains offset for indexing)

• Multidimensional
Fortran: REAL, dimension(2,3) :: A

(Type contains shape, to check that B is (3,2) and C is (2,2) if you write C=matmul(A,B))

No idea how many entries here
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Records

• Records are collections of names and types
{ id1:T1, id2:T2, … , idn:Tn}

• C calls them struct

• Objects, at their simplest, are just records extended 
with references (pointers) to the functions which 
manipulate their contents

...and some calling syntax that doesn’t let you invoke its methods 
without passing an instance to manipulate...
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Type constructors

• When the program can define types, the compiler 
must be able to construct representations of them, to
– Put in symbol tables

– Consult for conversions

– Etc.

• Generate a structure representing the type at its 
declaration

• Bind names to these structures when variables are 
determined to be of the matching type
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Object types

• The type of a record is the cartesian product of all its 
component types

• Looking at objects as glorified records, their types are the 
same way, just add method signatures

Class Point {
float x, y;

float getX() { return x; }

float getY() { return y; }

}

becomes

{ x: float, y: float, getX : fun(Point → float), getY : fun(Point→float) }
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Wait a minute...

{ x: float, y: float,

     getX : fun(Point → float), getY : fun(Point→float)

}

       These are not in the argument lists of float getX() or float getY()

– Implementation generates one static lump of code for taking x-s out of 
Points

– The reason it acts differently with different instances is that the instance 
is passed as a hidden argument:

Point p = new Point(3,2);

p.getX() ↔ Point.getX ( p )

– Inside the method body, the hidden argument can go by the name “this”
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Objects imply more

Class ColoredPoint extends Point {
int color;

int getColor() { return color; }

}

seen as an extended record works out to

{ x: float, y: float, color: int, getX : fun(Point → float), getY : fun(Point→float), 
getColor : fun(ColoredPoint → int) }

That alone doesn’t tell us what to do here:

ColoredPoint cp = new ColoredPoint ( 3.0, 4.0, red );

Point p;

p = cp;
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Things to support

• Inheritance, subclassing, polymorphism, overloading, 
abstract classes, interfaces, etc. create a hierarchy of 
derived types

• Type-checking of comparisons, method calls, 
assignments, etc. must take this programmer-defined 
hierarchy into account

Name Type
p Point
cp ColoredPoint

{ float, float, fun(Point→float), fun(Point→float) }

Point U { int, fun(ColoredPoint→int) }

Subclass relation
(ColoredPoint <: Point)

Symbol table
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Assignment, revisited

• We had

    id : T |- E : T    

id : T |- id = E : T

• Adding subclasses, it becomes

    id : T |- E : S   where S <: T 

          id : T |- id = E : T
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Impact on static checking

• The type of an object reference isn’t known at 
compile time
– That’s what a class hierarchy is for, different types can step in for 

each other

• Overridden methods appear with multiple 
implementations

and sligthly different call signatures

• Resolution requires some policy on how much 
dynamic information to account for
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An example with Java

Class Animal {
String voice; void speak() {

    System.out.println ( voice );

}

}

gives type { voice : String, speak : fun(Animal→void) }

Class Cat extends Animal {
String voice = “meow”;

}

gives type { voice : String, speak : fun(Animal→void) }
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Same field name, inherited method

• Fields are statically resolved, not overridden
• Method calls are dynamically dispatched using the run-time type of the 

instance, and parameter list + return type

Class Animal {
String voice;

void speak() { println ( voice ); }

}

Class Cat extends Animal {
String voice = “meow”;

}

(new Cat()).speak(); // ← this prints “null”

// Looking at the Cat type redirects the method call to Animal.speak

Statically resolved
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Overridden method

Class Animal {
String voice;

void speak() { println ( voice ); }

}

Class Cat extends Animal {
String voice = “meow”;

void speak() { println ( voice ); }

}

(new Cat()).speak(); // ← this prints “meow”

// At run time, look at instance and detect that speak : fun(→void) means

// fun ( Cat→void ) instead of fun(Animal→void)

Statically resolved
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Objects as records

• One thing the compiler must deal with is how to lay 
out instances in memory

• The types of fields and methods indicate what 
instances must look like in a flat memory space

Point a
x=2
y=3
*getX
*getY

Text segment
Point_getX:
     return this->x
Point_getY:
    return this->y

Point b
x=6
y=7
*getX
*getY

Heap

This carries through 
into the executable 
program
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Objects as abstract data types

– Checking, say, that

a.getX() == b.getY()

is correctly typed

requires a structure that

shows how both have

methods like that, and

that they return comparable

numbers

Point a
{x,y}
getX()
getY()

ColoredPoint b
{x,y}
getX()
getY()

color=128
getColor()

Point
 <:
ColoredPoint

This may be discarded 
after compilation
(well, depending on the language)
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Summary of the week
(in reverse)
• Representation of types

– Objects make the compiler build a class hierarchy
– Derived types make the compiler construct user-defined type descriptors
– Basic types can be hard-coded in a predefined hierarchy

• Static type checking
– Static type checking goes through all expressions to determine that the 

syntax attaches them to meaningful types
– With an attribute grammar, it can be done during parsing

• (Static semantics are a subset of natural semantics)
– You just remove the states
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That’s a lot to take in

• M’kay, I’m almost finished prattling on about types 
now

• All that remains is to take one short peek at how a 
simple single inheritance scheme and dynamic call 
dispatch can map into low-level code
– After we’ve looked closer at low-level code
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Is all this really necessary?

• Erm… I know we’ve been skipping along the 
borderline of the syllabus here.

• If you know your L and S attributions and can suggest 
how to represent simple things in symbol tables, it’ll 
be just fine



  

21

What was it for, then?

• Most practical languages define a far richer notion of 
types than just skipping around the syntax tree and 
seeing that there are ints and bools in the right places

• Those are what people actually use

• Starting from a vague guess at how their compilers 
and run-time systems work, it’s easier to make 
improved guesses over time
– The ability to second-guess compilers and run-time systems is a 

coveted skill among software developers



  

22

Next time

• Three-address code
– Which is an abstract cousin of assembly programming
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