

1

(Simple) Objects

TDT4205 – Lecture 19

2

Where we were

• Last time, we looked at the details of function call
mechanisms

• Object types require some extension to this, but we
can cover the basics by taking a quick look at it

• That is today’s topic

3

Process address space
(again...)

Assembly program
contains a straight-
forward recipe for
how to lay out this
file

Data

Text Text

Data

Heap

Stack

Executable file
(on disk)

Run-time
memory image

OS loader
expands file to
image every time
program is run

4

Code generation for functions

• Functions become labels for addresses where the
subsequent instructions accept the arguments

(laid out as a stack frame matching the function’s activation record)

Text segment
_factorial:
 (setup stackframe)
 (copy arg. 1)
 (compute)
 (remove stackframe)
 (return result)
_other_function:
 (all that stuff)
 (return)
_ one_more_function:
 (same story)
 (return)

We looked at the operations
that go into these steps
last time

5

Code generation for function calls

• Static function calls have unique names and type
signatures, compiler can just push arguments in turn
and insert call operation

Text segment
_factorial:
 (setup stackframe)
 (copy arg. 1)
 (compute)
 (remove stackframe)
 (return result)

_main:
 push 3
 call _factorial

This location is mapped from a
symbolic name into a target for
the program counter:
1) Assembler substitutes name with symbolic adr.
2) Linker resolves adr. relative to text segment start
3) Loader maps it to actual address, visible to OS

6

The need for run-time dispatch

interface Point { int getx(); int gety(); float norm(); }

class ColoredPoint implements Point { ...

 float norm() { return sqrt(x*x+y*y); } ...

}

class 3DPoint implements Point { ...

 float norm() { return sqrt(x*x+y*y+z*z); } ...

}

Point p;

if (cond) p = new ColoredPoint();

else p = new 3DPoint();

float n = p.norm();

Which of these to call...

...is only known at run time

7

Method calls need indirection

• Even if we
generate methods
for each variant,
the destination of
a call can’t be
resolved once
and for all...

Text segment
_cpoint_norm:
 (setup stackframe)
 (compute)
 (return result)

_3dpoint_norm:
 (setup stackframe)
 (compute)
 (return result)

_main:
 this = point
 push this
 call (something)

Which adr. to put here?

8

Number the methods

• Inherited/overridden methods can share the same index
Class A {

 void f();

}

Class B extends A {

 void f();

 void g();

 void h();

}

Class C extends B {

 void e();

}

0

0
1
2

3

9

Each class gets a table

• Keeping the indices consistent per method,

a call to “f” for either of these classes is a call to
“method #0”

A
f &a_f

B
f &b_f
g &b_g
h &b_h

C
f &b_f
g &b_g
h &b_h
e &c_e

10

Static lookup by cast

• With an explicit cast, the table to use can be determined
statically

B my_b = new B();

((A) my_b).f() ← resolves to “call method 0 in table A”,

 where we find ptr. to A-s

 implementation of f()

A
f &a_f

B
f &b_f
g &b_g
h &b_h

C
f &b_f
g &b_g
h &b_h
e &c_e

11

Dynamic lookup by instance

• With an explicit cast, the table to use can be determined
statically

B my_b = new B();

my_b.f() ← Resolves to “call method 0 in table B”,

 where we find ptr. to B-s overridden

 implementation of f()

A
f &a_f

B
f &b_f
g &b_g
h &b_h

C
f &b_f
g &b_g
h &b_h
e &c_e

12

Dynamic table identification
• In order to resolve which table to use based on an object instance, the

instance must be constructed with a pointer to the right table

B my_b = new B(0);

creates an instance

my_b.f()

creates an indir. call

A_DV
f &a_f

B_DV
f &b_f (0)
g &b_g
h &b_h

C_DV
f &b_f
g &b_g
h &b_h
e &c_e

my_b
dv &B_DV

my_b
dv &B_DV b_f:

 (do_stuff)

(data segment)

(text segment)

B_DV
f &b_f (0)
g &b_g
h &b_h

13

This (mildly) complicates the
call mechanism
• Generated function calls go

push param1

push param2..

call function

• Generated method calls go
dv = dv_offset(this) ← ‘this’ is an object instance, dv is table’s offset

adr = n(dv) ← where ‘n’ is the method index, dv the table

push param1

push param2…

push this ← implicit argument, as we discussed before

call adr

Via this indirection, the function called will be
found via the dv table an instance is constructed with

14

Why ‘dv’?
• This mechanism is called a Dispatch Vector

...or a dispatch table…

...or a selector table….

...but vector is as good a name as any.

• All DV-s can be statically generated at compile time
Data segment
A_DV:
 &a_f /* 0 */
B_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
C_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
 &c_e /* 3 */

Text segment
a_f:
 /* code for A.f */

b_f:
 /* code for B.f */
b_g:
 /* code for B.g */
b_h:
 /* code for B.h */

c_e:
 /*code for C.e */

(offset in table is a
constant multiple of
method index: all
pointers have the
same size...)

15

It allows inheritance

• C can get most of its methods from B
– Syntax says it’s a subclass

– Compiler embeds that when generating the dispatch vector

Data segment
A_DV:
 &a_f /* 0 */
B_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
C_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
 &c_e /* 3 */

Text segment
a_f:
 /* code for A.f */

b_f:
 /* code for B.f */
b_g:
 /* code for B.g */
b_h:
 /* code for B.h */

c_e:
 /*code for C.e */

16

It allows overriding

• B provides a different implementation of f() than A
does

Data segment
A_DV:
 &a_f /* 0 */
B_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
C_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
 &c_e /* 3 */

Text segment
a_f:
 /* code for A.f */

b_f:
 /* code for B.f */
b_g:
 /* code for B.g */
b_h:
 /* code for B.h */

c_e:
 /*code for C.e */

17

Interfaces

• This creates a natural interpretation of interfaces
(which are classes without an implementation)

• They amount to constraints on the dispatch vector
layout for classes that implement them

• They can be disposed of after compilation

• Abstract classes contain a dispatch vector layout and
some specific implementations to point it at

18

Objects can be put on heap
• B my_b = new B();

Data segment
A_DV:
 &a_f /* 0 */
B_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
C_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
 &c_e /* 3 */

Text segment
a_f:
 /* code for A.f */

b_f:
 /* code for B.f */
b_g:
 /* code for B.g */
b_h:
 /* code for B.h */

c_e:
 /*code for C.e */

Stack
*my_b

Heap
{ dv = &B_DV }

19

Objects can be put on stack
• B my_b = B();

Data segment
A_DV:
 &a_f /* 0 */
B_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
C_DV:
 &b_f /* 0 */
 &b_g /* 1 */
 &b_h /* 2 */
 &c_e /* 3 */

Text segment
a_f:
 /* code for A.f */

b_f:
 /* code for B.f */
b_g:
 /* code for B.g */
b_h:
 /* code for B.h */

c_e:
 /*code for C.e */

Stack
my_b = {
 dv = &B_DV
}

(The dv pointer is a field of
constant size in either case)

20

Footnote on memory access

• Fields that are not multiples of register size can be
laid out densely, or with padding
– For e.g. a CPU with 4-byte words,

struct { char a; int16_t b; char c }

can be laid out as

or alternatively,

a b
1

b
2 c

a
b

1
b

2

c

0 0 0

0 0

0 0 0

21

Byte-aligned access is not
always supported
• Some processors demand register-aligned adresses,

so

will force the compiler to generate a fetch of the
whole thing, and code to mask out and shift the
elements you want

i.e. for access to b

a b
1

b
2 c

a b
1

b
2 c

0 b
1

b
2 0

0b
1

b
2 0

Load

Delete

Shift

(The code to do this
can easily take more
space than you save
by packing data)

22

Byte-aligned access is slow

• Hardware-support for unaligned access typically does the
load-mask-delete thing anyway

• You don’t have to write it, but it takes time (~10x)

• I’m just mentioning this because the memory-indirection
scheme might indicate that dynamic dispatch adds great
run-time overhead

• Memory access is expensive, but not always in a way
that’s easy to expect...

23

Next up

• An introduction to 64-bit x86 assembly programming

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

