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Control Flow Graphs

TDT4205 – Lecture 23
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Optimizations

• We wish to apply various program transformations to 
improve its performance without altering its meaning

• Transformations apply at either high or low IR levels

• Optimizations must be safe
– That is, the optimized program must give the same results as the 

un-optimized program for every possible execution
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Program meaning is implicit

• The information we require is not necessarily written 
plainly in the source code

• Consider:
x = y + 1

y = 2 * z

x = y + z

z = 1

z = x

• Are all these statements necessary?
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Program meaning is implicit

• Some of the statements are dead code
x = y + 1 ← This assignment of x...

y = 2 * z ← ...is not used in any intermediate statement...

x = y + z ← ...until x is assigned again

z = 1 ← This assignment of z...

z = x ← ...is immediately overwritten

• Noticing this, we can tell that
y = 2 * z

x = y + z

z = x

is an equivalent program
• Control flow is linear here, so dead state is obvious
• It gets harder to tell when control flow gets complicated
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Conditions complicate the 
matter
• Adding some control flow,

x = y + 1  ← is this statement still dead?

y = 2 * z

if ( c ) { x = y + z }

z = 1  ← is this statement still dead?

z = x

• The first assignment of x may or may not be used:
x = y + 1

y = 2 * z

if ( c ) { x = y + z }

z = 1  ← This assignment makes no difference

z = x

This assignment is relevant when c is false
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Loops complicate the matter

• If we insert a loop...
while ( d ) {

 x = y + 1  ← is this statement still dead?

 y = 2 * z

 if ( c ) { x = y + z }

 z = 1  ← is this statement still dead?

}

z = x

...neither statement can be omitted
while ( d ) {

 x = y + 1

 y = 2 * z

 if ( c ) { x = y + z }

 z = 1

}

z = x

The assignment is relevant when there
is another iteration of the loop
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Low-level code complicates 
the matter

• Control flow is more obvious from source code syntax 
than from its translation into jumps and labels:

L1:

ifFalse d jump L2

x = y + 1

y = 2 * z

ifFalse c jump L3

x = y + z

L3:

z = 1

jump L1

L2:

z = x

Data 
dependencies

Control flow
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What we need

• Methods to compute information that are
– implicit in the program
– static (so that it can be found at compile time)
– valid for every possible dynamic situation (at run time)

• A data structure that can represent every possible control 
flow
– Different branches taken (conditionals)
– Branches taken different numbers of times (loops)

• Problem is similar to that of NFA:
“What are all the possible paths I can take from here?”
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Control Flow Graphs (CFGs)

• Program control flow can be captured in a directed graph, 
where statements make nodes and their sequencing 
follows the arcs

• Movement of data can be inferred by traversing a structure 
like this
– By far the most common approach in present compilers

(It is also possible to graph data movement and infer control, but let’s stick 
to the control flow view)

• Multiple paths emerge since nodes can have multiple 
incoming/outgoing arcs
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Linear sequences

• These are a bit boring:
a = 1

b = 2

c = a + b

• Therefore, we contract them to basic blocks

a=1

b=2

c=a+b

a=1
b=2

c=a+b
(but remember that there
are separate statements
inside...)
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Branches end basic blocks

• Consider:
x = z-2

y = 2*z

if ( c ) {

    x = x+1

    y = y+1

}

else {

    x = x-1

    y = y-1

}

z = x + y

x=z-2
y=2*z
if(c)

x=x+1
y=y+1

x=x-1
y=y-1

z = x+y

falsetrue
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Multiple paths

• Every possible 
execution is 
encoded in the 
CFG

• Each path 
corresponds to a 
run of the 
program

x=z-2
y=2*z
if(c)

x=x+1
y=y+1

x=x-1
y=y-1

z = x+y

falsetrue

B1

B2 B3

B4



  

13

When c is true
x=z-2
y=2*z
if(c)

x=x+1
y=y+1

z = x+y

B1

B2

B4
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When c is false
x=z-2
y=2*z
if(c)

x=x-1
y=y-1

z = x+y

B1

B3

B4
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Infeasible executions
• Some paths may not correspond to any run

stuff
1

if(c)

if-code else-code

stuff
2

if(c)

if-code else-code

stuff
3
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Infeasible executions
• Unless either branch modifies c, this path won’t 

occur, even though the CFG contains it:
stuff

1

if(c)

if-code

stuff
2

if(c)

else-code

stuff
3
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Interpretation of arcs

• Without pruning infeasible paths (which may require 
run-time information), the analysis will remain 
conservative/safe as long as every actual path is also 
represented

• Outgoing arcs mean that their destination may be a 
successor to a basic block

• Incoming arcs mean that any of the source blocks 
may be a predecessor to a basic block
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Recursive CFG construction

• At high level, CFGs can be built by a syntax directed 
scheme, like our TAC translation patterns:

• CFG ( S1; S2; S3; … ; Sn ) =

S1

S2

S3

Sn

...



  

19

Recursive CFG construction:
if-else
• CFG ( if ( E ) S1 else S2 ) =

if(E)

S2S1

(empty)
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Recursive CFG construction:
if
• CFG ( if ( E ) S ) =

if(E)

S

(empty)
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Recursive CFG construction:
while
• CFG ( while ( E ) S ) =

if(E)

S

(empty)
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Recursive application

• As long as every statement is treated recursively, the 
whole becomes the sum of its parts:

while ( c ) {
  x = y + 1
  y = 2 * z
  if ( d ) x = y+z
  z = 1
}
z = x

S1

S2

(S1;S2)
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Recursive application

• As long as every statement is treated recursively, the 
whole becomes the sum of its parts:

while ( c ) {
  x = y + 1
  y = 2 * z
  if ( d ) x = y+z
  z = 1
}
z = x

S2

(while)

if(c)

body
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Recursive application

• As long as every statement is treated recursively, the 
whole becomes the sum of its parts:

while ( c ) {
  x = y + 1
  y = 2 * z
  if ( d ) x = y+z
  z = 1
}
z = x

S2

(S1;S2;S3;S4)

if(c)

S1

S2

S3

S4
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Recursive application

• As long as every statement is treated recursively, the 
whole becomes the sum of its parts:

while ( c ) {
  x = y + 1
  y = 2 * z
  if ( d ) x = y+z
  z = 1
}
z = x

S2

(S1;S2;S3;S4)

if(c)

x=y+1

y=2*z

S3

z=1

if(d)

x=y+z
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Efficiency

• Empty blocks and sequences can be pruned after or 
during construction

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x
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Efficiency

• These graphs grow large
– It’s good to have as few basic blocks as possible
– They should be as large as possible

• Merge linear subgraphs - if
– B2 is a successor of B1

– B1 has one outgoing edge
– B2 has one incoming edge

B1→ B2 should be a block

• Remove empty blocks
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At low-level IR

• Split the operation sequence at labels and jumps
– Labels can have incoming control flow
– Jumps have outgoing control flow

L1:
ifFalse(c) jump L2
x=y+1
y=2*z
ifFalse(d) jump L3
x=y+z
L3:
z=1
jump L1
L2:
z=x

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x
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At low-level IR

• Conditional jump = 2 successors

• Unconditional jump = 1 successor

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x
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The outcome is the same

• Both procedures give us equivalent program logic:

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x
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