

1

Control Flow Graphs

TDT4205 – Lecture 23

2

Optimizations

• We wish to apply various program transformations to
improve its performance without altering its meaning

• Transformations apply at either high or low IR levels

• Optimizations must be safe
– That is, the optimized program must give the same results as the

un-optimized program for every possible execution

3

Program meaning is implicit

• The information we require is not necessarily written
plainly in the source code

• Consider:
x = y + 1

y = 2 * z

x = y + z

z = 1

z = x

• Are all these statements necessary?

4

Program meaning is implicit

• Some of the statements are dead code
x = y + 1 ← This assignment of x...

y = 2 * z ← ...is not used in any intermediate statement...

x = y + z ← ...until x is assigned again

z = 1 ← This assignment of z...

z = x ← ...is immediately overwritten

• Noticing this, we can tell that
y = 2 * z

x = y + z

z = x

is an equivalent program
• Control flow is linear here, so dead state is obvious
• It gets harder to tell when control flow gets complicated

5

Conditions complicate the
matter
• Adding some control flow,

x = y + 1 ← is this statement still dead?

y = 2 * z

if (c) { x = y + z }

z = 1 ← is this statement still dead?

z = x

• The first assignment of x may or may not be used:
x = y + 1

y = 2 * z

if (c) { x = y + z }

z = 1 ← This assignment makes no difference

z = x

This assignment is relevant when c is false

6

Loops complicate the matter

• If we insert a loop...
while (d) {

 x = y + 1 ← is this statement still dead?

 y = 2 * z

 if (c) { x = y + z }

 z = 1 ← is this statement still dead?

}

z = x

...neither statement can be omitted
while (d) {

 x = y + 1

 y = 2 * z

 if (c) { x = y + z }

 z = 1

}

z = x

The assignment is relevant when there
is another iteration of the loop

7

Low-level code complicates
the matter

• Control flow is more obvious from source code syntax
than from its translation into jumps and labels:

L1:

ifFalse d jump L2

x = y + 1

y = 2 * z

ifFalse c jump L3

x = y + z

L3:

z = 1

jump L1

L2:

z = x

Data
dependencies

Control flow

8

What we need

• Methods to compute information that are
– implicit in the program
– static (so that it can be found at compile time)
– valid for every possible dynamic situation (at run time)

• A data structure that can represent every possible control
flow
– Different branches taken (conditionals)
– Branches taken different numbers of times (loops)

• Problem is similar to that of NFA:
“What are all the possible paths I can take from here?”

9

Control Flow Graphs (CFGs)

• Program control flow can be captured in a directed graph,
where statements make nodes and their sequencing
follows the arcs

• Movement of data can be inferred by traversing a structure
like this
– By far the most common approach in present compilers

(It is also possible to graph data movement and infer control, but let’s stick
to the control flow view)

• Multiple paths emerge since nodes can have multiple
incoming/outgoing arcs

10

Linear sequences

• These are a bit boring:
a = 1

b = 2

c = a + b

• Therefore, we contract them to basic blocks

a=1

b=2

c=a+b

a=1
b=2

c=a+b
(but remember that there
are separate statements
inside...)

11

Branches end basic blocks

• Consider:
x = z-2

y = 2*z

if (c) {

 x = x+1

 y = y+1

}

else {

 x = x-1

 y = y-1

}

z = x + y

x=z-2
y=2*z
if(c)

x=x+1
y=y+1

x=x-1
y=y-1

z = x+y

falsetrue

12

Multiple paths

• Every possible
execution is
encoded in the
CFG

• Each path
corresponds to a
run of the
program

x=z-2
y=2*z
if(c)

x=x+1
y=y+1

x=x-1
y=y-1

z = x+y

falsetrue

B1

B2 B3

B4

13

When c is true
x=z-2
y=2*z
if(c)

x=x+1
y=y+1

z = x+y

B1

B2

B4

14

When c is false
x=z-2
y=2*z
if(c)

x=x-1
y=y-1

z = x+y

B1

B3

B4

15

Infeasible executions
• Some paths may not correspond to any run

stuff
1

if(c)

if-code else-code

stuff
2

if(c)

if-code else-code

stuff
3

16

Infeasible executions
• Unless either branch modifies c, this path won’t

occur, even though the CFG contains it:
stuff

1

if(c)

if-code

stuff
2

if(c)

else-code

stuff
3

17

Interpretation of arcs

• Without pruning infeasible paths (which may require
run-time information), the analysis will remain
conservative/safe as long as every actual path is also
represented

• Outgoing arcs mean that their destination may be a
successor to a basic block

• Incoming arcs mean that any of the source blocks
may be a predecessor to a basic block

18

Recursive CFG construction

• At high level, CFGs can be built by a syntax directed
scheme, like our TAC translation patterns:

• CFG (S1; S2; S3; … ; Sn) =

S1

S2

S3

Sn

...

19

Recursive CFG construction:
if-else
• CFG (if (E) S1 else S2) =

if(E)

S2S1

(empty)

20

Recursive CFG construction:
if
• CFG (if (E) S) =

if(E)

S

(empty)

21

Recursive CFG construction:
while
• CFG (while (E) S) =

if(E)

S

(empty)

22

Recursive application

• As long as every statement is treated recursively, the
whole becomes the sum of its parts:

while (c) {
 x = y + 1
 y = 2 * z
 if (d) x = y+z
 z = 1
}
z = x

S1

S2

(S1;S2)

23

Recursive application

• As long as every statement is treated recursively, the
whole becomes the sum of its parts:

while (c) {
 x = y + 1
 y = 2 * z
 if (d) x = y+z
 z = 1
}
z = x

S2

(while)

if(c)

body

24

Recursive application

• As long as every statement is treated recursively, the
whole becomes the sum of its parts:

while (c) {
 x = y + 1
 y = 2 * z
 if (d) x = y+z
 z = 1
}
z = x

S2

(S1;S2;S3;S4)

if(c)

S1

S2

S3

S4

25

Recursive application

• As long as every statement is treated recursively, the
whole becomes the sum of its parts:

while (c) {
 x = y + 1
 y = 2 * z
 if (d) x = y+z
 z = 1
}
z = x

S2

(S1;S2;S3;S4)

if(c)

x=y+1

y=2*z

S3

z=1

if(d)

x=y+z

26

Efficiency

• Empty blocks and sequences can be pruned after or
during construction

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

27

Efficiency

• These graphs grow large
– It’s good to have as few basic blocks as possible
– They should be as large as possible

• Merge linear subgraphs - if
– B2 is a successor of B1

– B1 has one outgoing edge
– B2 has one incoming edge

B1→ B2 should be a block

• Remove empty blocks

28

At low-level IR

• Split the operation sequence at labels and jumps
– Labels can have incoming control flow
– Jumps have outgoing control flow

L1:
ifFalse(c) jump L2
x=y+1
y=2*z
ifFalse(d) jump L3
x=y+z
L3:
z=1
jump L1
L2:
z=x

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x

29

At low-level IR

• Conditional jump = 2 successors

• Unconditional jump = 1 successor

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x

30

The outcome is the same

• Both procedures give us equivalent program logic:

L1:
ifFalse(c) jump L2

x=y+1
y=2*z
IfFalse d jump L3

x=y+z

L3:
z=1
jump L1

L2:
z=x

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

