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From last time

* We defined control flow graphs in terms of
— Operations
— Basic blocks of operations (that end in jumps)
— Program points

* As an example, we looked at live variables...
(variables that may still be used before their next assignment)

...how they can be found by traversing a control flow graph...

— Collect them in sets attached to program points

— Find out how instructions affect the sets attached to the neighboring program points
— Find out how to handle the sets at points where several control flows meet

...and how the control flow graph captures every possible execution of the program
(as well as a few impossible ones, to stay on the safe side)
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There's a general procedure
here

* Associate program points with sets that represent the
information we're after

* Figure out how the sets change
— As a function of instructions
— As a function of meeting points between control paths

* Make a safe assumption at an initial point
* Work out the function throughout the graph
* Repeat until the sets stop changing
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There are two issues with It

* Will the sets ever stop changing?

* Does the analysis get better by repeated
applications?

* We’'ll talk about the first one today, and the second
one later
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Convergence

* Will the scheme always work?

— It will under certain conditions:
* If the sets have a maximum and minimum possible size, and
* If the changes we make either only add or remove elements,

they will necessarily reach a point where they stop changing, so the
analysis ends.

* It's good to guarantee that it does reach an end, so
that the compiler won’t get stuck on analyzing some
programs forever
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Precision

* How good is the outcome of the analysis?

— We can call it precise if it reflects all the control flows the program
can/will take, and none of those it will not take

* A perfectly precise analysis can not be derived by a
computer

* It’s still good to see if we can say anything about how
much precision is lost, and why
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Sets and orders

* Some sets have a sequence we're taught in grade school
— Take the natural numbers, 1<2<3<4< ..,
— The ordering relation here is ‘<’
— It is a total order, because it puts any pair of natural numbers in relation to
each other
* Other sets don’t have any
— Take the complex numbers, you can neither say that 1 is bigger, smaller, nor
equal to the imaginary unit
* Some sets let you consistently pick how to order them

— And you can write the ordering relation with some mildly deformed
comparison operator like “C”, to distinguish it from <, C, and others
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Partial order relations

A partial order (P,C) contains
— A set of things (P)
— A partial order relation (C)

The partial order relation is

— Reflexive: X C X
— Anti-symmetric: ifxCyandyC x,thenx=y
— Transitive: ifxCyandyLC z thenxC z

For a total order then for every y,x eitherx Cyory C X
In partial orders, not every pair needs to be comparable
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An example

* We can partially order some food ingredients, for
llustration

* Let x E y denote that x is an ingredient in y
flour E bread
flour E pasta
eggs C pasta
yeast C bread
pasta C lasagna
bread C sandwich
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Hasse diagrams

Keeping transitivity in mind, we can draw a
picture of this order

sandwich lasagna

bread pasta

SON N

yeast flour eggs

* It's implied that yeast goes into making a
sandwich via the bread connection

* There are pairs here which are not @ T B
comparable by our ingredient relation e Teehnoloss

www.ntnu.edu %



Least Upper Bound (LUB)

* The least upper bound of an element pair is
the first thing they have in common, going
up the order

* LUB(yeast,flour) = bread

sandwich lasagna

bread pasta

SON N

yeast flour eggs
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Greatest Lower Bound (GLB)

* The greatest lower bound of an element
pair is the first thing they have in common,
going down the order

* GLB(bread,pasta) = flour

sandwich lasagna

bread pasta

SON N

yeast flour eggs
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Maximum and minimum

* Partial orders don’t necessarily have a unique top or
bottom

* GLB(yeast,eggs) doesn't exist
* LUB(sandwich, pasta) doesn'’t exist either

sandwich lasagna

bread pasta

SON N

yeast flour eggs
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Lattices

* A partial order is a /attice if any finite (non-empty) subset has a
LUB and a GLB

* The natural numbers ordered by < is a lattice

— If you pick a finite subset, LUB is the biggest number you picked, and GLB is the
smallest one

* The natural numbers do have a unique bottom element (_L)
— It's zero

* They don’t have a unique top element (T)
— They are a countably infinite sequence

* You can pick infinite subsets
— The even numbers, the odd numbers, the primes...
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Complete lattices

* A lattice is complete if any (non-empty) subset has a
LUB and GLB

* These have top (“biggest”) and bottom (“smallest”)
elements
For a complete lattice (L,C)
T = LUB(L)
1 = GLB(L)

* Every finite lattice is complete
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Meet and join

* Just to have some symbols that are independent of how
we choose the order, define two operators

° “Meet”
x My = GLB(x,y)
« “Join”

x Uy =LUB(X,Yy)

(...with their natural extension to sets of more elements...)
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Power sets

* Enough with the food ingredients, consider the set
{a,b,c}
* |ts Cartesian™ product with itself is the set of all pairs
{{a,b}, {a,c}, {b.c}}
* Its power set is
{©, {a}, {b}, {c}, {a,b}, {a,c}, {b.c}, {a,b,c} }
* The power set gives a partial order by the subset
relation C

. . . . . J ) 1
* Technically, the product of all unordered pair combinations is not called B :'(E::; n:{‘]’:“‘i?sl':‘:) g
“Cartesian”, but “n-th symmetric product” is cumbersome to say, and we Science and Technology
won’t need the distinction for anything.
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The power set lattice

* Ordering relation: C
* Meet operator: N

- Join operator; U /{a,b,c}\
* Top:{a,b,c} (2.1 ac b
* Bottom: @ a, a,c C
o <
{a} by {c}
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We can turn it upside/down

Just switch the
operators around:

* Ordering relation: D z

* Meet operator: U / \

- Join operator: N {a} {b}  {c}
* Top: @

* Bottom: {a,b,c} \ /
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Connection to live variables

* If we take {a,b,c} to be the three variables in a short
program, every possible choice of live variables
corresponds to a point in the power set lattice

* If we can express the effect of statements as a transfer
function from one place to another in the lattice, we can
argue that the set attached to a program point only moves
In one direction wrt. the order when it is applied repeatedly

* That means it will either end up at the top, or stop
somewhere before it
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Transfer functions

* This is just a formalization of the idea that the
instruction between two program points is a function
from one place in the lattice to another

* For an instruction |
— Forward analysis: out[l] = F(in[l])
— Backward analysis: in[l] = F(out[l])

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu %



Extension to basic blocks

* The function of a block B is just a nesting of the
functions of its component instructions

* Forward:

out[B] = F, (Fri (... (F2(F;(in[B])))))
* Backward:

in[B] =F, (F(... (Foqy (F,(out[B])))))
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Where paths meet up

* For the points where multiple control flows intersect:
* Forward:

in[B] = N { out[B’] | B’ is a predecessor of B }
* Backward:

out[B] = M {in[B’] | B' is a successor of B }

If we really wanted to, we could use LI instead and reverse
the orders

With M, transfers in the lattice move toward its bottom
With U, transfers in the lattice move toward its top
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