NTNU - Trondheim

 Norwegian University of Science and TechnologyLiveness revisited

Putting "the framework" into practice

- Having introduced some ideas and notation, it might be useful to visit the liveness analysis again
- This time, we'll apply the notation and connect it to the (somewhat abstract) argument that it works
- Thus, we can use the same ideas and notation for other analysis instances next time

Slightly modified liveness example

- I have removed the variable 'd', to have fewer variables to deal with
- This makes the program a bit stupider, but it'll work for illustration

The power set lattice

- This is why I want one less variable to deal with

Name all the program points

so that we can talk about them in multiple diagrams

Recipe for the constraints

- Constraints from instructions:

$$
\text { in }[I]=\{\text { out }[I]-\operatorname{def}[I]\} \cup \text { use }[I]
$$

- Constraints from control flow:
out $[B]=\cup \operatorname{in}\left[B^{\prime}\right] \mid B^{\prime}$ is a successor of B

Data flow equations for each point

$$
\begin{aligned}
& \mathrm{L} 1=\mathrm{L} 2 \cup\{\mathrm{c}\} \\
& \mathrm{L} 2=\mathrm{L} 3 \cup \mathrm{~L} 11 \\
& \mathrm{~L} 3=\{\mathrm{L} 4-\mathrm{x}\} \cup\{\mathrm{y}\} \\
& \mathrm{L} 4=\{\mathrm{L} 5-\mathrm{y}\} \cup\{\mathrm{z}\} \\
& \mathrm{L} 5=\mathrm{L} 6 \cup\{\mathrm{c}\} \\
& \mathrm{L} 6=\mathrm{L} 7 \cup \mathrm{~L} 9 \\
& \mathrm{~L} 7=\{\mathrm{L} 8-\mathrm{x}\} \cup\{\mathrm{y}, \mathrm{z}\} \\
& \mathrm{L} 8=\mathrm{L} 9 \\
& \mathrm{~L} 9=\{\mathrm{L} 10-\mathrm{z}\} \\
& \mathrm{L} 10=\mathrm{L} 1 \\
& \mathrm{~L} 11=\{\mathrm{L} 12-\mathrm{z}\} \cup\{\mathrm{x}\}
\end{aligned}
$$

An initial assumption

- Last time, I took the commonsensical approach that the variables will see some future use we know nothing about
- This was a tiny fib, so as to get to the data flow thing without waving my hands around what this program ostensibly "does"
- When you're analyzing an entire function/program/translation unit, it is actually quite safe to say that nothing will be used again at the end

The handwaving

- Since we're re-doing this with all the trimmings now, please make-believe that this is an independent program unit
- That is pretty contrived
- In the context of optimizations, the entire code should actually be cut away, it does nothing observable
- If we can ignore that, while still pretending to be interested in the liveness result, we can work out the constraints from the more appropriate starting point of the empty set
- Yes, I know it's a bit corny to optimize pointless code
- Keeps the example small, though

Iteration 1, L11

$\mathrm{L} 1=\mathrm{L} 2 \cup\{\mathrm{c}\}$
$\mathrm{L} 2=\mathrm{L} 3 \cup \mathrm{~L} 11$
$\mathrm{~L} 3=\{\mathrm{L} 4-\mathrm{x}\} \cup\{\mathrm{y}\}$
$\mathrm{L} 4=\{\mathrm{L} 5-\mathrm{y}\} \cup\{\mathrm{z}\}$
$\mathrm{L} 5=\mathrm{L} 6 \cup\{\mathrm{c}\}$
$\mathrm{L} 6=\mathrm{L} 7 \cup \mathrm{~L} 9$
$\mathrm{~L} 7=\{\mathrm{L} 8-\mathrm{x}\} \cup\{\mathrm{y}, \mathrm{z}\}$
$\mathrm{L} 8=\mathrm{L} 9$
$\mathrm{~L} 9=\{\mathrm{L} 10-\mathrm{z}\}$
$\mathrm{L} 10=\mathrm{L} 1$
$\mathrm{~L} 11=\{\mathrm{L} 12-\mathrm{z}\} \cup\{\mathrm{x}\}$

$$
\begin{aligned}
& \mathrm{L} 1=\{ \} \\
& \mathrm{L} 2=\{ \} \\
& \text { L3 }=\{ \} \\
& \text { L4 }=\{ \} \\
& \text { L5 }=\{ \} \\
& \text { L6 }=\{ \} \\
& \text { L7 }=\{ \} \\
& \text { L8 }=\{ \} \\
& \text { L9 }=\{ \} \\
& \text { L10 }=\{ \} \\
& \text { L11 }=\{x\} \\
& \text { L12 }=\{ \}
\end{aligned}
$$

Iteration 1, L10 \rightarrow L3

$\mathrm{L} 1=\mathrm{L} 2 \cup\{\mathrm{c}\}$
$\mathrm{L} 2=\mathrm{L} 3 \cup \mathrm{~L} 11$
$\mathrm{~L} 3=\{\mathrm{L} 4-\mathrm{x}\} \cup\{\mathrm{y}\}$
$\mathrm{L} 4=\{\mathrm{L} 5-\mathrm{y}\} \cup\{\mathrm{z}\}$
$\mathrm{L} 5=\mathrm{L} 6 \cup\{\mathrm{c}\}$
$\mathrm{L} 6=\mathrm{L} 7 \cup \mathrm{~L} 9$
$\mathrm{~L} 7=\{\mathrm{L} 8-\mathrm{x}\} \cup\{\mathrm{y}, \mathrm{z}\}$
$\mathrm{L} 8=\mathrm{L} 9$
$\mathrm{~L} 9=\{\mathrm{L} 10-\mathrm{z}\}$
$\mathrm{L} 10=\mathrm{L} 1$
$\mathrm{~L} 11=\{\mathrm{L} 12-\mathrm{z}\} \cup\{\mathrm{x}\}$

$$
\begin{aligned}
& \text { L1 }=\{ \} \\
& \text { L2 }=\{ \} \\
& \text { L3 }=\{y, z, c\} \\
& \text { L4 }=\{z, c\} \\
& \text { L5 }=\{y, z, c\} \\
& \text { L6 }=\{y, z\} \\
& \text { L7 }=\{y, z\} \\
& \text { L8 }=\{ \} \\
& \text { L9 }=\{ \} \\
& \text { L10 }=\{ \} \\
& \text { L11 }=\{x\} \\
& \text { L12 }=\{ \}
\end{aligned}
$$

Iteration 1, L2,L1

$\mathrm{L} 1=\mathrm{L} 2 \cup\{\mathrm{c}\}$
$\mathrm{L} 2=\mathrm{L} 3 \cup \mathrm{~L} 11$
$\mathrm{~L} 3=\{\mathrm{L} 4-\mathrm{x}\} \cup\{\mathrm{y}\}$
$\mathrm{L} 4=\{\mathrm{L} 5-\mathrm{y}\} \cup\{\mathrm{z}\}$
$\mathrm{L} 5=\mathrm{L} 6 \cup\{\mathrm{c}\}$
$\mathrm{L} 6=\mathrm{L} 7 \cup \mathrm{~L} 9$
$\mathrm{~L} 7=\{\mathrm{L} 8-\mathrm{x}\} \cup\{\mathrm{y}, \mathrm{z}\}$
$\mathrm{L} 8=\mathrm{L} 9$
$\mathrm{~L} 9=\{\mathrm{L} 10-\mathrm{z}\}$
$\mathrm{L} 10=\mathrm{L} 1$
$\mathrm{~L} 11=\{\mathrm{L} 12-\mathrm{z}\} \cup\{\mathrm{x}\}$

$$
\begin{aligned}
\mathrm{L} 1 & =\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}\} \\
\mathrm{L} 2 & =\{\mathrm{x}, \mathrm{y}, \mathrm{z} \mathrm{c}\} \\
\mathrm{L} 3 & =\{y, z, c\} \\
\mathrm{L} 4 & =\{\mathrm{z}, \mathrm{c}\} \\
\mathrm{L} 5 & =\{y, z, \mathrm{c}\} \\
\mathrm{L} 6 & =\{y, z\} \\
\mathrm{L} 7 & =\{y, z\} \\
\mathrm{L} 8 & =\{ \} \\
\mathrm{L} & =\{ \} \\
\mathrm{L} 10 & =\{ \} \\
\mathrm{L} 11 & =\{\mathrm{x}\} \\
\mathrm{L} 12 & =\{ \}
\end{aligned}
$$

The program points have moved

- We started them out at the bottom:

The program points have moved

- Now some of them are scattered around

Iteration 2

$\mathrm{L} 1=\mathrm{L} 2 \cup\{\mathrm{c}\}$
$\mathrm{L} 2=\mathrm{L} 3 \cup \mathrm{~L} 11$
$\mathrm{~L} 3=\{\mathrm{L} 4-\mathrm{x}\} \cup\{\mathrm{y}\}$
$\mathrm{L} 4=\{\mathrm{L} 5-\mathrm{y}\} \cup\{\mathrm{z}\}$
$\mathrm{L} 5=\mathrm{L} 6 \cup\{\mathrm{c}\}$
$\mathrm{L} 6=\mathrm{L} 7 \cup \mathrm{~L} 9$
$\mathrm{~L} 7=\{\mathrm{L} 8-\mathrm{x}\} \cup\{\mathrm{y}, \mathrm{z}\}$
$\mathrm{L} 8=\mathrm{L} 9$
$\mathrm{~L} 9=\{\mathrm{L} 10-\mathrm{z}\}$
$\mathrm{L} 10=\mathrm{L} 1$
$\mathrm{~L} 11=\{\mathrm{L} 12-\mathrm{z}\} \cup\{\mathrm{x}\}$

$$
\begin{aligned}
\mathrm{L} 1 & =\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}\} \\
\mathrm{L} 2 & =\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}\} \\
\mathrm{L} 3 & =\{\mathrm{y}, \mathrm{z}, \mathrm{c}\} \\
\mathrm{L} 4 & =\{\mathbf{x}, \mathrm{z} \mathrm{c}\} \\
\mathrm{L} 5 & =\{\mathbf{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}\} \\
\mathrm{L} & =\{\mathbf{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}\} \\
\mathrm{L} 7 & =\{\mathrm{y}, \mathrm{z}, \mathrm{c}\} \\
\mathrm{L} 8 & =\{\mathbf{x}, \mathrm{y}, \mathrm{c}\} \\
\mathrm{L} 9 & =\{\mathbf{x}, \mathbf{y}, \mathrm{c}\} \\
\mathrm{L} 10 & =\{\mathbf{x}, \mathbf{y}, \mathrm{z}, \mathrm{c}\} \\
\text { L11 } & =\{\mathrm{x}\} \\
\mathrm{L} 12 & =\{ \}
\end{aligned}
$$

The program points have moved again

- Notice that they're only heading towards the top

We've reached a fixed point

Analysis detected that there is an execution where $x=y+1$ is used

$\sim^{\text {L1 }}$	$L 1=\{x, y, z, c\}$
L2 if(c)	$L 2=\{x, y, z, c\}$
L3 \quad l	$L 3=\{y, z, c\}$
L4 $\mathrm{x}=\mathrm{y}+1$	$\mathrm{L} 4=\{\mathrm{x}, \mathrm{z}, \mathrm{c}\}$
L5 $y=2^{*} z$ if(c)	$L 5=\{x, y, z, c\}$
L6	$L 6=\{x, y, z, c\}$
L7	$L 7=\{y, z, c\}$
$x=y+z$	$\mathrm{L} 8=\{\mathrm{x}, \mathrm{y}, \mathrm{c}\}$
L8 4 L9 \downarrow	$L 9=\{x, y, c\}$
$\mathrm{z}=1$	$\mathrm{L} 10=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}\}$
L10 L11	L11 $=\{x\}$
$\mathrm{z}=\mathrm{x}$	L12 $=\{ \}$
L12	L12 $=\{ \}$

So, the argument goes

- If the transfer function only moves program points up the lattice, they will either
- Come to a fixed point before they reach the top of the lattice
- Reach the top of the lattice, and have no place left to go
- Analyses that use transfer functions which have this monotonicity will always terminate at a fixed point

That was a lot of notation for a simple observation

- The goal is generality
- If liveness were all we cared about, this would be overkill
- Reaching Definitions, Available Expressions and Constant Folding are the same way, just with other choices of operators, sets, transfer functions and directions
- It's hopefully a little easier to remember them as 4 cases of 1 method rather than 4 separate approaches to separate problems

Next time

- With most of the notation in place, we'll discuss the other analysis instances within this same terminology, to highlight what they have in common, and how they differ

