NTNU - Trondheim Norwegian University of Science and Technology

Data flow analysis instances

Where we were

- We have gone through Live Variables
- By intuition
- As a set of constraint equations that converge to a fixed point when you solve them iteratively
- Looking at how its solutions correspond to positions in a lattice
and argued that the general method works for different types of information as well.
- Today, we'll try it out with
- A few different types of elements in the sets
- Different constraints

The framework ingredients

- A domain of things to analyze
- Sets of variables (Liveness)
- Sets of copies
- Sets of expressions
- Sets of variable definitions...
- A transfer function
- Gives a forward/backward direction
- Says how to change the sets based on the program logic
- A meet operator
- Says what to do when control flow paths collide

Copy propagation

- Some variables can be copies of each other, let us detect them
- Liveness is a backward analysis that adds set elements from any path to a program point
- Copy propagation is a forward analysis that restricts set elements to those that are valid along every path to a program point
- We can work copy propagation out by intuition as well, to illustrate the effects of direction and choice of meet operator

Copy propagation

- I've modified the running example a bit, so that there are some copies to detect

Copy propagation

- The first two statements create some copies to start with
- The loop body makes x a copy of another variable than it was before

Copy propagation

- Here's an assignment which stops t from being a copy of any other variable

Copy propagation

- Control flows meet:
To be sure that we can treat two variables as copies of each other, there can't be any possibility that they're different

Copy propagation

Copy propagation

NTNU - Trondheim
Norwegian University of Science and Technology

Iteration 2

- We've found a path to the loop head where $x=y$ is not necessarily true
- Take it away:

$$
\begin{aligned}
& \{x=y, z=t\} \cap\{z=t\} \\
& =\{z=t\}
\end{aligned}
$$

Solution

NTNU - Trondheim
Norwegian University of Science and Technology

Available Expressions

- An available expression is an expression evaluated in all program executions, which would have the same value if re-evaluated
- The sets we look for are sets of expressions, so we need to number all of those

Available Expressions Data flow equations

- Instructions:

$$
\operatorname{out}[B]=F_{B}(\operatorname{in}[B])
$$

- Control flow:

$$
\operatorname{in}[B]=\cap\left\{\text { out }\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\} \quad \text { (Meet op. is intersection) }
$$

- Interpretation:

An expression is available at the entry of B if it is available at the exit of all predecessor blocks

Available Expressions Transfer function

$$
F_{1}(X)=\{X-\text { kill }[1]\} \cup \text { gen }[1]
$$

where

```
kill [ I ] = expressions "killed" by I
gen [ I ] = expressions "generated" by I
x = y OP z
x = OP y
x=y
x = & y
if (x)
return x
x = f(y1, y2, ... yn )
```

generates $\{y \mathrm{OP} z$ \}, kills expr. with x in them generates \{OP y \}, kills expr. with x generates nothing, kills expr. with x generates nothing, kills expr. with x generates nothing, kills nothing generates nothing, kills nothing generates nothing, kills expr with x

Expressions in the example

$$
\begin{aligned}
& e 1: y+1 \\
& e 2: 2^{*} z \\
& e 3: y+z
\end{aligned}
$$

Data flow equations

$$
\begin{aligned}
& \mathrm{L} 4=\{\mathrm{L} 3\} \cup\{\mathrm{e} 1\} \\
& \mathrm{L} 5=\{\mathrm{L} 4-\mathrm{e} 1\} \cup \mathrm{e} 2 \\
& \mathrm{~L} 8=\{\mathrm{L} 7\} \cup \mathrm{e} 3 \\
& \mathrm{~L} 9=\mathrm{L} 6 \cap \mathrm{~L} 8 \\
& \mathrm{~L} 10=\mathrm{L} 9-\{\mathrm{e} 2, \mathrm{e} 3\} \\
& \mathrm{L} 12=\mathrm{L} 11-\{\mathrm{e} 2, \mathrm{e} 3\}
\end{aligned}
$$

Iteration 1

> e1: $y+1$
> e2: 2 * z
> e3: $y+z$

Iteration 2: no change

> e1: y +1
> e2: $2^{*} z$
> e3: $y+z$
$\mathrm{L} 1=\{ \} \bigcap \mathrm{L} 10$
$L 4=\{L 3\} \cup\{e 1\}$
L5 $=\{\mathrm{L} 4-\mathrm{e} 1\} \cup \mathrm{e} 2$
$\mathrm{L} 8=\{\mathrm{L} 7\} \cup \mathrm{e} 3$
$\mathrm{L} 9=\mathrm{L} 6$ १ L 8
$\mathrm{L} 10=\mathrm{L} 9-\{\mathrm{e} 2, \mathrm{e} 3\}$
L11 = L1
$\mathrm{L} 12=\mathrm{L} 11-\{\mathrm{e} 2, \mathrm{e} 3\}$

Reaching Definitions

- A reaching definition is a definition of a variable where the assigned value may be observed at a program point in some execution
- The sets we look for are sets of assignments, so we need to number all of those

Reaching Definitions Data flow equations

- Instructions:

$$
\text { out }[B]=F_{B}(\text { in }[B]) \quad \text { (Forward analysis) }
$$

- Control flow:

$$
\operatorname{in}[B]=U\left\{\text { out }\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\} \quad \text { (Meet op. is union) }
$$

- Interpretation:

A definition reaches the entry of block B if it reaches the exit of at least one of its predecessor nodes

Reaching Definitions Transfer function

$$
F_{1}(X)=\{X-\text { kill }[I]\} \cup \text { gen [I] }
$$

where
kill [I] = definitions "killed" by I
gen [I] = definitions "generated" by I
$x=y$ OP $z \quad$ generates $\{x=y$ OP $z\}$, kills other definitions of x
$x=O P y$
$x=y$
$x=\& y$
if (x)
return x
$x=f(y 1, y 2, \ldots, y n)$ generates $\{x=O P y\}$, kills other definitions of x generates $\{x=y\}$, kills other definitions of x generates $\{x=\& y\}$, kills other definitions of x generates nothing, kills nothing generates nothing, kills nothing generates $\{x=f \ldots\}$, kills other definitions of x

Definitions in the example

$$
\begin{aligned}
& d 1: x=y+1 \\
& d 2: y=2^{*} z \\
& d 3: x=y+z \\
& d 4: z=1 \\
& d 5: z=x
\end{aligned}
$$

$$
\begin{aligned}
& d 1: x=y+1 \\
& d 2: y=2^{*} z \\
& d 3: x=y+z \\
& d 4: z=1 \\
& d 5: z=x
\end{aligned}
$$

Data flow equations

$$
\begin{aligned}
& \mathrm{L} 1=\{ \} \cup \mathrm{L} 10 \\
& \mathrm{~L} 4=\{\mathrm{L} 3-\mathrm{d} 3\} \cup \mathrm{d} 1 \\
& \mathrm{~L} 5=\mathrm{L} 4 \bigcup \mathrm{~d} 2 \\
& \mathrm{~L} 8=\{\mathrm{L} 7-\mathrm{d} 1\} \cup \mathrm{d} 3 \\
& \mathrm{~L} 9=\mathrm{L} 6 \bigcup \mathrm{~L} 8 \\
& \mathrm{~L} 10=\{\mathrm{L} 9-\mathrm{d} 5\} \cup \mathrm{d} 4 \\
& \mathrm{~L} 11=\mathrm{L} 2 \\
& \mathrm{~L} 12=\{\mathrm{L} 11-\mathrm{d} 4\} \cup \mathrm{d} 5
\end{aligned}
$$

Iteration 1

$$
\begin{aligned}
& d 1: x=y+1 \\
& \text { d2: } y=2^{*} z \\
& \text { d3: } x=y+z \\
& d 4: z=1 \\
& d 5: z=x
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L} 1=\{ \} \cup \mathrm{L} 10 \\
& \mathrm{~L} 4=\{\mathrm{L} 3-\mathrm{d} 3\} \cup \mathrm{d} 1
\end{aligned}
$$

L1 =
L2 =
L3 =

$$
\mathrm{L} 4=\mathrm{d} 1
$$

$$
\mathrm{L} 5 \text { = d1,d2 }
$$

$$
\mathrm{L} 6=\mathrm{d} 1, \mathrm{~d} 2
$$

$$
\mathrm{L} 7=\mathrm{d} 1, \mathrm{~d} 2
$$

L8 = d2,d3

$$
\mathrm{L} 9=\{\mathrm{d} 1, \mathrm{~d} 2\} \cup\{\mathrm{d} 2, \mathrm{~d} 3\}=\{\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3\}
$$

$$
\mathrm{L} 10=\{\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3\} \cup \mathrm{d} 4=\{\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4\}
$$

L11 =

$$
\mathrm{L} 12=\mathrm{d} 5
$$

Iteration 2

$$
\begin{aligned}
& d 1: x=y+1 \\
& \text { d2: } y=2^{*} z \\
& \text { d3: } x=y+z \\
& d 4: z=1 \\
& d 5: z=x
\end{aligned}
$$

$L 1=\{ \} \cup\{d 1, d 2, d 3, d 4\}$	$L 5=L 4 \cup d 2$
$L 2=d 1, d 2, d 3, d 4$	$L 8=\{L 7-d 1\} \cup d 3$
$L 3=d 1, d 2, d 3, d 4$	$L 9=L 6 \cup L 8$
$L 4=d 1, d 2, d 4$	$L 10=\{L 9-d 5\} \cup d 4$
$L 5=d 1, d 2, d 4$	$L 12=\{L 11-d 4\} \cup d 5$
$L 6=d 1, d 2, d 4$	
$L 7=d 1, d 2, d 4$	
$L 8=d 2, d 3, d 4$	
$L 9=d 1, d 2, d 3 \cup\{d 1, d 2, d 4\}=\{d 1, d 2, d 3, d 4\}$	
$L 10=d 1, d 2, d 3, d 4$	
$L 11=d 1, d 2, d 3, d 4$	
$L 12=d 5 U d 1, d 2, d 3=\{d 1, d 2, d 3, d 5\}$	

Iteration 3: no change

$\mathrm{L} 1=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4$
$\mathrm{~L} 2=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4$
$\mathrm{~L} 3=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4$
$\mathrm{~L} 4=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 4$
$\mathrm{~L} 5=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 4$
$\mathrm{~L} 6=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 4$
$\mathrm{~L} 7=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 4$
$\mathrm{~L} 8=\mathrm{d} 2, \mathrm{~d} 3, \mathrm{~d} 4$
$\mathrm{~L} 9=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4$
$\mathrm{~L} 10=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4$
$\mathrm{~L} 11=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4$
$\mathrm{~L} 12=\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 5$

$$
\begin{aligned}
& d 1: x=y+1 \\
& d 2: y=2^{*} z \\
& \text { d3: } x=y+z \\
& d 4: z=1 \\
& d 5: z=x
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L} 1=\{ \} \cup \mathrm{L} 10 \\
& \mathrm{~L} 4=\{\mathrm{L} 3-\mathrm{d} 3\} \cup \mathrm{d} 1 \\
& \mathrm{~L} 5=\mathrm{L} 4 \bigcup \mathrm{~d} 2 \\
& \mathrm{~L} 8=\{\mathrm{L} 7-\mathrm{d} 1\} \cup \mathrm{d} 3 \\
& \mathrm{~L} 9=\mathrm{L} 6 \bigcup \mathrm{~L} 8 \\
& \mathrm{~L} 10=\{\mathrm{L} 9-\mathrm{d} 5\} \cup \mathrm{d} 4 \\
& \mathrm{~L} 11=\mathrm{L} 2 \\
& \mathrm{~L} 12=\{\mathrm{L} 11-\mathrm{d} 4\} \cup \mathrm{d} 5
\end{aligned}
$$

Key takeaways

- The choice of domain determines what we're analyzing
- With union as meet operator, we get "maybe"analyses
- There is a path where an element was introduced
- With intersection as meet operator, we get "must"analyses
- Every path introduces these elements

Next time

- We will
- put all these (and one more) into a big ol' overview
- take out the lattices again, and try to say something about how well the fixed point solution characterizes the analyzed program
- invent a function which lets us use the same method to detect loops

